Садржај


Contemporary Materials II−2 (2011)

Contemporary Materials (Renewable energy sources), II−2 (2011)          Page 94 of 102

UDK 620.92:523.9

CONTEMPORARY INORGANIC THIN FILM PHOTOVOLTAIC MATERIALS AND TECHNOLOGIES

M. Topič

University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana

Abstract
Inorganic thin film photovoltaic materials prove and even more promise that their small consumption and low cost are the drivers of high volume production of  solar cells and photovoltaic modules. Representative types of contemporary inorganic thin-film PV materials and technologies are reviewed and their state-of-the-art achievements and future trends presented.

Keywords: photovoltaics, solar cell, semiconductor, inorganic material, thin film.

References

[1] A. Jäger-Waldau, PV Status Report 2011, Luxembourg: Office for Official Publications of the European Union, Brussels 2011. 126 pages. [E-book] Available: http://re.jrc.ec.europa.eu/refsys/.
[2] Y. Hishikawa, K.Tabuchi, S.Kato, A. Takano, T. Sasaki, M. Tanda, S. Saito, H. Sato, S. Fujikake, T. Yoshida and H. Sakai, A new structure a-Si solar cell with plastic film substrate, Proc. of first WCPEC, Hawaii, USA, 1994, 441.
[3] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, E. D. Dunlop, Solar cell efficiency tables (version 38), Prog. Photovolt: Res. Appl. 19 (2011) 565–572. PMid:3696177
[4] D. L. Staebler and C. R. Wronski, Reversible conductivity changes in discharge-produced amorphous silicon, Appl. Phys. Lett., 31 (1977) 292−294.
[5] J. Zhao, A. Wang, M. A. Green, F. Ferrazza, 19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells, Applied Physics Letters, 73 (1998) 1991−1993. PMid:4673805
[6] S. Benagli, D. Borrello, E. Vallat-Sauvain, J. Meier, U. Kroll, J. Hotzel, J. Spitznagel, J. Steinhauser, L. Castens, Y. Djeridane, High-efficiency Amorphous Silicon Devices on LPCVD-ZnO TCO Prepared in Industrial KAI-M R&D Reactor, 24th European Photovoltaic Solar Energy Conference, Hamburg, September 2009, 344−349. PMid:7251859    PMCid:370786
[7] X. Wu, J.C. Keane, R.G. Dhere, C. DeHart, A. Duda, T. A. Gessert, S. Asher, D. H. Levi, P. Sheldon, 16.5%-efficient CdS/CdTepolycrystalline thin-film solar cell, Proceeding of 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001, 995−1000.
[8] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Progress In Photovoltaics: Research and Applications, 2011; published online DOI: 10.1002/pip.1078.
[9] R. E. I. Schropp, M. Zeman, Amorphous and microcrystalline silicon solar cells: Modeling, Materials and Device Technology, Kluwer Academic Publisher, 1998. PMid:20317707    PMCid:381719
[10] A.S. Ferlauto et al., Modeling the dielectric functions of silicon-based films in the amorphous, nanocrystalline and microcrystalline regimes, Journal of Non-Crystalline Solids, 266−269 (2000) 269−273.
[11] M.A. Green, Lambertian light trapping in textured solar cells and light-emitting diodes: analytical solutions, Progress in Photovoltaics: Research and Applications, 10 (2002) 235−241. PMid:17165440
[12] J. Krč, F. Smole, M. TOPIČ, Analysis of light scattering in amorphous Si:H solar cells by a one-dimensional semi-coherent optical model, Progress in photovoltaics: Research and Applications, 11 (2003) 15−26.
[13] M. Zeman, R.A.C.M.M. van Swaaij, J.W. Metselaar, R.E.I. Schropp, Optical modeling of a-Si:H solar cells with rough interfaces: Effect of back contact and interface roughness, Journal of Applied Physics 88 (2000) 6436−6442. PMid:17628005
[14] J. Špringer, A. Poruba, M. Vaneček, S. Fay, L. Feitknecht, N. Wyrsch, J. Meier, A. Shah, T. Repmann, O. Kluth, H. Stiebig, B. Rech, Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001, 2830−2833. PMid:17675003
[15] J. Meier, R. Fluckinger, H. Keppner, A. Shah, Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior?, Applied Physics Letters, 65 (1994) 860−862. PMid:8856446
[16] A. Smets, T. Matsui, M. Kondo, High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime, Journal of Applied Physics 104 (2008) 034508. PMid:9449027
[17] T. Matsui, A. Matsuda, M. Kondo, Solar Energy Materials and Solar Cells 90 (2006) 31999-3204. PMid:16880503
[18] M. Zeman, J. Krč, Optical and electrical modeling of thin-film silicon solar cells, J. Mater. Res., 23 (2008) 889-898. PMid:14967177
[19] M. Schmid, R. Klenk, M. Ch. Lux-Steiner, M. Topič, J. Krč, Modeling plasmonic scattering combined with thin-film optics, Nanotechnology 22 (2011) 025204. PMid:1714836
[20] J. Krč, M. Zeman, L. Luxembourg, M. Topic, Appl. Phys. Lett. 94 (2009) 153501.
[21] B. Lipovšek, J. Krč, O. Isabella, M. Zeman, M. Topič, Modeling and optimization of white paint back reflectors for thin-film silicon solar cells, J. Appl. Phys. 108 (2010) 103115.
[22] J. Krč, B. Lipovšek, M.Topič, Light Management in Thin-Film Solar Cell, chapter 4 in book A.B. Cristóbal López et al. (Eds.), Next Generation of Photovoltaics, Springer Series in Optical Sciences 165, DOI 10.1007/978-3-642-23369-2 4.
[23] P. Cuony, M. Marending, D. T. L. Alexander, M. Boccard, G. Bugnon, M. Despeisse, and C. Ballif, Mixed-phase p-type silicon oxide containing silicon nanocrystals and its role in thin-film silicon solar cells, Appl. Phys. Lett. 97 (2010) 213502.
[24] S. Wei, A. Zunger, Calculated Natural Bond Offsets of all II-VI and III-V Semiconductors: Chemical Trends and the Role of Cation d Orbitals, Appl. Phys. Lett 72 (1998) 2011−2013. PMid:3958184    PMCid:424446
[25] U. Rau, K. Taretto, S. Siebentritt, Grain Boundaries in Cu(In,Ga)(Se,S)2 Thin-film Solar Cells, Appl. Phys. A 96 (2009) 221−234. PMid:21864517
[26] U. Rau, M. Schmidt, Electronic properties of ZnO/CdS/Cu(In,Ga)Se2 solar cells — aspects of heterojunction formation, Thin Solid Films, 387 (2001) 141−146. PMid:15016725
[27] A. N. Tiwari, Plenary talk at the 26-EU-PVSEC, Hamburg 2011.
[28] M. Topič, F. Smole, J. Furlan, Band-gap engineering in CdS/Cu(In,Ga)Se2 solar cells, J. Appl. Phys. 79 (1996) 8537−8540.
[29] M. Gloeckler, J. R. Sites, Band-gap grading in Cu(In,Ga)Se2 solar cells, Journal of Physics and Chemistry of Solids 66 (2005) 1891−1894.
[30] T. K. Todorov, K. B. Reuter, D. B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber, Advanced Materials, 22 (2010) E156–E159. PMid:519912
[31] http://www.solar-frontier.com/GeneralPage/28/Kunitomi_Plant_Photo_Gallery/1 (accessed 24 Nov 2011)
[32] D. Bonnet, P. Meyers, J. Mater. Res. 10 (1998) 2740-2754. PMid:15834687
[33] J. Perrenoud, J, L. Kranz, S. Buecheler, F. Pianezzi, A.N. Tiwari, Thin Solid Films 519 (2011) 7444-7448 doi: 10.1016/j.tsf.2010.12.234
[34] J. Hiltner, J.R.Sites Mat.Res.Soc. Proc. 668 (2001) H9.8.
[35] Enzenroth R. A.; Barth K. L.; Sampath W. S.; et al., Journal of Solar Energy Engineering - Transactions of the ASME 131 (2009) 021012.
[36] Dobson KD; Visoly-Fisher I; Hodes G; et al., Stability of CdTe/CdS thinfilm solar cells, Solar Energy Materials and Solar Cells 62 (2000) 295−325. PMid:9209094
[37] J.R. Sites, J. Pan, Strategies to increase CdTe solar-cell voltage, Thin Solid Films 515 (2007) 6099−6102.
[38] K.-J. Hsiao, J.R. Sites, Proc. 34th IEEE Photovoltaics Specialists Conf., Philadelphia (2009), pp. 001846-001850.
[39] A. Jäger-Waldau, PV Status Report 2010, Luxembourg: Office for Official Publications of the European Union, Brussels 2010. 121 pages. [E-book] Available: http://re.jrc.ec.europa.eu/refsys/.
[40] First Solar Financial Report for Q3/2011. Available: http://finance.yahoo.com