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Abstract: A focus of frontline interdisciplinary research today is the development of 

the conceptual framework and the experimental background of the science of nanostructu-
red materials and the perspectives of its technological applications. G. Guisbiers and L. 
Buchaillot found out the general equation (GBE) which was based only on the surface area 
to volume ratio of nanostructures and statistics (Fermi–Dirac or Bose–Einstein) followed by 
the particles involved in the considered phenomena (melting, ferromagnetism, vibration and 
superconductivity). In this paper, we consider another phenomenon, the regularity-chaos 
transition, and find its connection with GBE. We have performed the computational experi-
ments with one hydrogen molecule and one graphene sheet. H2-C interactions are described 
by Lennard-Jones potential. The main goal of our experiments is find out the critical tempe-
ratures of regularity-chaos transition. The results of computation derived using Runge-Kut-
ta-Fehlberg method show approximate agreement with GBE. 

Keywords: Hydrogen molecule, critical temperature, regularity-chaos transition, 
Guisbiers-Buchaillot equation. 

 
 
 

1. INTRODUCTION 
 

Study of size and shape effects on material  
properties has lately attracted an enormous attention. 
Understanding how materials behave at tiny length 
scales is crucial for developing the future nanotec- 
hnologies [1]. The advances in nanomaterial mode-
ling together with new characterization tools are the 
key to study new properties and capabilities, hence 
to design the devices with improved performance. 
Nanomaterials have different properties relative to 
the bulk materials, which is a very important fact. 
Even so, the determination of nanomaterial properti-
es is still in its infancy and many materials properti-
es are still unknown. Also, theoretical predictions of 
some characteristic of materials play a very impor-
tant role. That is very useful when experiment can 
not be easily done. If we want to discuss modeling 
nanomaterials, we first have to consider two main  
approaches. In the “top–down” approach, one looks 
at the variation of the systems properties that change 
when going from the macro to the nano dimensions. 
On the contrary, in the “bottom-up” approach, one 
starts from atoms and adds more and more atoms, in 
order to see how the properties are modified. The 
first one uses the classical thermodynamics, whereas 
the second relies on computational methods, like m-
olecular dynamics. Molecular dynamics generally 

considers less than one million atoms in order to keep 
calculation time within the reasonable values. This fa-
ctor limits the nanostructure size modeled below the 
values around 100 nm. By using classical thermodyn-
amics, the “top–down” approach ceases to be valid 
when thermal energy kT becomes smaller than the 
energetic gap between two successive levels [2].  

A great deal of scientific community today is 
involved in the research in hydrogen storage on the 
nanostructure level. It is considered to be one of the 
most important factors in improving the performan-
ce and efficiency of the fuel cells. Because of that, it 
is very important to know as much as possible about 
its properties and its interaction with other elements 
and materials. It is shown that graphene is a very 
good choice for hydrogen storage [3 ,4, 5].  

In this paper, we consider a universal equation 
of nanoscale, proposed by Guisbiers and Buchaillot 
[6,7]:  

Tx /T x,∞ =[1 − αshape/D]1/2s         (1) 

It only requires the knowledge of the surface 
area to volume ratio of the nanomaterial, its size, as 
well as the statistics (Fermi–Dirac or Bose–Einstein) 
followed by the particles involved in the considered 
material property. Guisbiers and Buchaillot studied 
the relation between the material size and shape and 
characteristic temperatures like melting, Debye, Cu-
rie or superconducting temperatures and proposed a 
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unique equation for nanoscale. Here, D is the diame-
ter of the nanostructure, and αshape is the parameter 
quantifying the size effect on the characteristic tem-
perature and depends on the nanostructure’s shape. 
The shape parameter is directly proportional to the 
surface area over volume ratio A/V as indicated by 

 αshape =[D(γs −γl )/ΔHm,∞](A/V )   (2) 

 where Δ Hm,∞ is the bulk melting enthalpy and γs(l) 
the surface energy in the solid (liquid) phase.  

In this paper, we will consider another 
characteristic temperature, the so-called regularity-
chaos transition temperature TRC (Fig. 1.).  

 

 
Figure 1. Scheme of the regularity-chaos and chaos-

regularity transitions for a hydrogen molecule moving 
near graphene  

 
The results of computation derived using 

Runge-Kutta-Fehlberg method show approximate 
agreement with GBE. 
 
 

2. METHOD 
 

Here we consider a hydrogen molecule mo-
ving near the graphene sheet with NN 24   atoms 
resting in their equilibrium positions. We propose 
the initial molecule position and velocity (a=0,142 
nm is the distance between neighboring C atoms): 
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In our experiments, N=6,7….12. If the size of 

our graphene sheet is evaluated, one can find that its 
size is within nanoscale.  

Hydrogen molecule is interacting with a grap-
hene sheet curved around z axes and we solve the 
classical equation of motion assuming that the num-
ber of carbon atoms and temperature, determining 
the molecule initial velocity, are large enough. In the 
chaotic regime, a small change in the initial conditi-
ons leads to a large change in H2 molecule behavior. 
Regular and chaotical motion of the molecule is vie-
wed in the temperature interval between 10 K and 
200 K, with step size of 5 K. One can find several 
regular-chaos transitions and chaos-regularity transi-
tion temperatures. It should be mentioned that we 
have a step size of 5 K and that it is probably possi-
ble to find some new TRC if the step size is smaller.  

Sensitivity to the initial conditions was exami-
ned by changing 

z(0)→1,0001*z(0)    (9) 

We have tried to describe the dependence of 
the regularity-chaos transition temperature on N by 
the function 

N

b
PNf  1)(                      (10) 

yielded from the relation (1). We will see that, in 
many cases, for appropriate values of parameters P 
and b, f(N) approximates to the regularity-chaos 
transition temperatures. 

At large enough N and T ,we can use the 
classical mechanics due to the following 

TN
K

Lz )14(
4.0

            (11) 

where   is curvature of the structure and zL  iz   z-
component of the molecule angular momentum. Ra-
dius of the graphene sheet curvature is equal to 

 2/)14(3 aN          (12) 

In the following examples we take N=12 and 
β=0,15π. In first case (Fig.2.) we see that curves re-
presenting trajectories (change velocity in time) are 
the same, but in the second and third case respecti-
vely, (Fig. 3. and Fig. 4) we can see sensitivity to the 
initial conditions. 
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Figure 2. )(tVx  at T=200 K (curves are the same for 

very close initial conditions-regularity).  
 

 
Figure 3. )(tVx  at T=140 K (curves are different for 

very close initial conditions-chaos).  
 

 
Figure 4. Vx(t) at T=30 K (large difference in curves for 

very close initial conditions-chaos) 
 
 

3. DEPENDENCE OF TRANSITION 
TEMPERATURE ON THE STRUCTURE 
SIZE 

 
We have performed several computational ex-

periments with different size and shape of graphene 
sheet in attempt to find out regularity-chaos transi-

tion temperature and see if there was any compatibi-
lity with GBE. Our results are presented in the follo-
wing figures. It should be mentioned that there are 
cases in which we have larger number of transitions, 
and we can not apply this approach, for example if 
β=±0,35π. It is possible to find the other regularity-
chaos transition temperatures if we use a smaller 
step size and, in most of cases, there is a problem 
with implementation of this approach. Also, in some 
of the cases, there are transitions on higher tempera-
tures which we do not consider in our experiments 
(T =10 K - 200 K), but there are points which belong 
to some new curve.  

 

 
Figure 5. Regularity-chaos transition temperature 
(kelvin), for  8.0 , found by the computation 

experiments (red circles) and f(N). Here b=5,95 and P is 
equal to 100 (blue line), 210 (green line), 270 (yellow 

line). 
 

 
Figure 6. Regularity-chaos transition temperature 
(kelvin), for  18.0 , found by the computation 

experiments (red circles) and f(N). Here b=5,95 and P is 
equal to 68 (blue line), 147 (green line), 500 (yellow line). 
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Figure 7. Regularity-chaos transition temperatures 

(kelvin), for β=0,15π, found by the computation 
experiments (red circles) and f(N). Here b=5,95 and P is 

equal to 68 (blue line), 155 (green line) 
 
 

4. CONCLUSION 
 

A great deal of scientific community today is 
involved in the research in the field of nanotechno-
logy. Because of that, it is very important to know 
some new properties and characteristics of that ma-
terial, which are obtained both theoretically and ex-
perimentally. Our aim was to find out if the GBE 
was applicable to new temperature transition, yet 
uninvestigated in the context of GBE, so-called re-
gularity-chaos transition. It is shown the approxima-
te agreement of this temperature dependence on 
structure size with GBE.  

We should mention that our computational ex-
periments have some shortcomings, the main ones 

being: (1) a relatively small number of C atoms are 
considered, (2) C atoms are always placed in their 
equilibrium positions, (3) we have not considered 
many possible different velocities at the same tem-
perature, but only the average value.  
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 
 

ТЕМПЕРАТУРА ПРЕЛАЗА РЕГУЛАРНОСТ–ХАОС  
И ГИЗБИР–БИШЕЛО ЈЕДНАЧИНА 

 
Сажетак: Изучавање особина наноструктура веома је важно како за науку тако и за 

примјену наноматеријала у индустрији. Гизбир и Бишело пронашли су универзалну једна-
чину наноструктуре (ГБЈ) која повезује величину и облик наноструктуре као и природу чес-
тица које учествују у интеракцији са карактеристичним температурама, као што су темпе-
ратура топљења, Дебајева, Киријева и температура прелаза у суперпроводно стање. У низу 
рачунарских експеримената ми смо истраживали зависност температуре прелаза регулaр-
ност–хаос о облику и величини графенског листа. У експеримeнту се посматра један моле-
кул водоника и један графенски лист. Интеракција H2–C описана је Ленард–Џонсовим по-
тенцијалом. Изучавање особина графена је веома важно за складиштење водоника. Резул-
тати, добијени помоћу Рунге–Кута–Фелбергове методе, приближно се слажу са ГБЈ.  

Кључне ријечи: молекул водоника, критична температура, прелаз регуларност–
хаос, Гизбир–Бишелоова једначина.  
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