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Abstract: A focus of frontline interdisciplinary research today is the development of
the conceptual framework and the experimental background of the science of nanostructu-
red materials and the perspectives of its technological applications. G. Guisbiers and L.
Buchaillot found out the general equation (GBE) which was based only on the surface area
to volume ratio of nanostructures and statistics (Fermi—Dirac or Bose—Einstein) followed by
the particles involved in the considered phenomena (melting, ferromagnetism, vibration and
superconductivity). In this paper, we consider another phenomenon, the regularity-chaos
transition, and find its connection with GBE. We have performed the computational experi-
ments with one hydrogen molecule and one graphene sheet. H,-C interactions are described
by Lennard-Jones potential. The main goal of our experiments is find out the critical tempe-
ratures of regularity-chaos transition. The results of computation derived using Runge-Kut-

ta-Fehlberg method show approximate agreement with GBE.
Keywords: Hydrogen molecule, critical temperature, regularity-chaos transition,

Guisbiers-Buchaillot equation.

1. INTRODUCTION

Study of size and shape effects on material
properties has lately attracted an enormous attention.
Understanding how materials behave at tiny length
scales is crucial for developing the future nanotec-
hnologies [1]. The advances in nanomaterial mode-
ling together with new characterization tools are the
key to study new properties and capabilities, hence
to design the devices with improved performance.
Nanomaterials have different properties relative to
the bulk materials, which is a very important fact.
Even so, the determination of nanomaterial properti-
es is still in its infancy and many materials properti-
es are still unknown. Also, theoretical predictions of
some characteristic of materials play a very impor-
tant role. That is very useful when experiment can
not be easily done. If we want to discuss modeling
nanomaterials, we first have to consider two main
approaches. In the “top—down” approach, one looks
at the variation of the systems properties that change
when going from the macro to the nano dimensions.
On the contrary, in the “bottom-up” approach, one
starts from atoms and adds more and more atoms, in
order to see how the properties are modified. The
first one uses the classical thermodynamics, whereas
the second relies on computational methods, like m-
olecular dynamics. Molecular dynamics generally
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considers less than one million atoms in order to keep
calculation time within the reasonable values. This fa-
ctor limits the nanostructure size modeled below the
values around 100 nm. By using classical thermodyn-
amics, the “top—down” approach ceases to be valid
when thermal energy k7 becomes smaller than the
energetic gap between two successive levels [2].

A great deal of scientific community today is
involved in the research in hydrogen storage on the
nanostructure level. It is considered to be one of the
most important factors in improving the performan-
ce and efficiency of the fuel cells. Because of that, it
is very important to know as much as possible about
its properties and its interaction with other elements
and materials. It is shown that graphene is a very
good choice for hydrogen storage [3 ,4, 5].

In this paper, we consider a universal equation
of nanoscale, proposed by Guisbiers and Buchaillot
[6,71:

]-I‘C /Tx,oo :[1 - ashape/D]]/zs (1)

It only requires the knowledge of the surface
area to volume ratio of the nanomaterial, its size, as
well as the statistics (Fermi—Dirac or Bose—Einstein)
followed by the particles involved in the considered
material property. Guisbiers and Buchaillot studied
the relation between the material size and shape and
characteristic temperatures like melting, Debye, Cu-
rie or superconducting temperatures and proposed a
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unique equation for nanoscale. Here, D is the diame-
ter of the nanostructure, and Oghape 1S the parameter
quantifying the size effect on the characteristic tem-
perature and depends on the nanostructure’s shape.
The shape parameter is directly proportional to the
surface area over volume ratio A4/ as indicated by
Oshape =[D(ys —y1 )/ AH,,)(A/V") 2
where 4 H,, . is the bulk melting enthalpy and y,
the surface energy in the solid (liquid) phase.

In this paper, we will consider another
characteristic temperature, the so-called regularity-
chaos transition temperature 7xc (Fig. 1.).
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Figure 1. Scheme of the regularity-chaos and chaos-
regularity transitions for a hydrogen molecule moving
near graphene

The results of computation derived using
Runge-Kutta-Fehlberg method show approximate
agreement with GBE.

2. METHOD

Here we consider a hydrogen molecule mo-
ving near the graphene sheet with 4N x2N atoms
resting in their equilibrium positions. We propose
the initial molecule position and velocity (a=0,142
nm is the distance between neighboring C atoms):

x(0) =3a 3)
y(0)=-1 nm 4)
z(0) = BN =2)a +0,05a (5)

V. (0)=0 (6)
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In our experiments, N=6,7....12. If the size of
our graphene sheet is evaluated, one can find that its
size is within nanoscale.

Hydrogen molecule is interacting with a grap-
hene sheet curved around z axes and we solve the
classical equation of motion assuming that the num-
ber of carbon atoms and temperature, determining
the molecule initial velocity, are large enough. In the
chaotic regime, a small change in the initial conditi-
ons leads to a large change in H, molecule behavior.
Regular and chaotical motion of the molecule is vie-
wed in the temperature interval between 10 K and
200 K, with step size of 5 K. One can find several
regular-chaos transitions and chaos-regularity transi-
tion temperatures. It should be mentioned that we
have a step size of 5 K and that it is probably possi-
ble to find some new T if the step size is smaller.

Sensitivity to the initial conditions was exami-
ned by changing
z(0)—1,0001*z(0) 9)

We have tried to describe the dependence of
the regularity-chaos transition temperature on N by
the function

_pli_L
SN =Py1-—

yielded from the relation (1). We will see that, in
many cases, for appropriate values of parameters P
and b, f(N) approximates to the regularity-chaos
transition temperatures.

At large enough N and T ,we can use the
classical mechanics due to the following

pL. = % (4N - DVTh

(10)

(11)

where £ is curvature of the structure and L_ iz z-

component of the molecule angular momentum. Ra-
dius of the graphene sheet curvature is equal to

V34N -1)a/(28) (12)

In the following examples we take N=12 and
£=0,157. In first case (Fig.2.) we see that curves re-
presenting trajectories (change velocity in time) are
the same, but in the second and third case respecti-
vely, (Fig. 3. and Fig. 4) we can see sensitivity to the
initial conditions.
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Figure 2. V (t) at T=200 K (curves are the same for

very close initial conditions-regularity).

3
:
.
i
-2

0 2 4 6 P! 10
¢
Figure 3. V(t) at T=140 K (curves are different for

very close initial conditions-chaos).
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Figure 4. V(1) at T=30 K (large difference in curves for
very close initial conditions-chaos)

3. DEPENDENCE OF TRANSITION
TEMPERATURE ON THE STRUCTURE
SIZE

We have performed several computational ex-
periments with different size and shape of graphene
sheet in attempt to find out regularity-chaos transi-

tion temperature and see if there was any compatibi-
lity with GBE. Our results are presented in the follo-
wing figures. It should be mentioned that there are
cases in which we have larger number of transitions,
and we can not apply this approach, for example if
[=+0,357. It is possible to find the other regularity-
chaos transition temperatures if we use a smaller
step size and, in most of cases, there is a problem
with implementation of this approach. Also, in some
of the cases, there are transitions on higher tempera-
tures which we do not consider in our experiments
(T=10 K - 200 K), but there are points which belong
to some new curve.
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Figure 5. Regularity-chaos transition temperature
(kelvin), for = —0.87 , found by the computation
experiments (red circles) and f(N). Here b=5,95 and P is

equal to 100 (blue line), 210 (green line), 270 (yellow
line).

10 11 12

transition temperature
[
h
S

s o
Lo
L
O ~
o [
Lo

] o]
100 T
] (o
] [} o
50: ~ O
5 6 7 8 9 10 11 12

N
Figure 6. Regularity-chaos transition temperature
(kelvin), for B = -0.187, found by the computation

experiments (red circles) and f(N). Here b=5,95 and P is
equal to 68 (blue line), 147 (green line), 500 (vellow line).
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Figure 7. Regularity-chaos transition temperatures
(kelvin), for =0, 15w, found by the computation
experiments (red circles) and f(N). Here b=5,95 and P is
equal to 68 (blue line), 155 (green line)

4. CONCLUSION

A great deal of scientific community today is
involved in the research in the field of nanotechno-
logy. Because of that, it is very important to know
some new properties and characteristics of that ma-
terial, which are obtained both theoretically and ex-
perimentally. Our aim was to find out if the GBE
was applicable to new temperature transition, yet
uninvestigated in the context of GBE, so-called re-
gularity-chaos transition. It is shown the approxima-
te agreement of this temperature dependence on
structure size with GBE.

We should mention that our computational ex-
periments have some shortcomings, the main ones

being: (1) a relatively small number of C atoms are
considered, (2) C atoms are always placed in their
equilibrium positions, (3) we have not considered
many possible different velocities at the same tem-
perature, but only the average value.
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FOR

TEMIIEPATYPA TIPEJIA3A PETYJIAPHOCT-XAOC
W T'N3BMP-BUIIEJIO JEJJTHAUMHA

Caskerak: M3ydaBame 0coOMHA HAHOCTPYKTYpa BEOMa je BaXKHO KaKo 3a HayKy Tako M 3a
NpUMjeHy HaHOMatepHjaia y nHayctpuju. [m3bup u bumeno npoHanumv cy yHUBep3aliHy jeaHa-
ynHy HaHocTpykrype (I'BJ) koja noBesyje BenunHy 1 00JIMK HAHOCTPYKTYpE Kao M IPHPOY Yec-
THIIA KOje Y4ECTBYjy Y MHTEPAKIMjH ca KapaKTepPHUCTUYHUM TeMIIepaTypama, Kao LITO Cy TeMIle-
patypa Torsersa, [lebajeBa, Kupujea i Temriepatypa mpenasa y CyIeprpoBOJHO CTamke. Y HU3Y
pauyHapCKUX EKCIIEpUMEHATa MU CMO HCTPaKHBAIM 3aBUCHOCT TEMIIEpaType Ipenasa peryap-
HOCT—Xa0C O OOJIMKY M BEJIMYMHHU IpadeHCKOr JIUcTa. Y eKCIepHMEHTY e IocMarpa jefaH MoJie-
KyJI BOJIOHMKA U jenaH rpadencku jict. Nnrepakimja H,—C onmcana je Jlenapa—IloncoBum mo-
TeHwjanoM. MsyuaBame ocobuHa rpadeHa je BeoMa BaXKHO 3a CKIIAIUIITER:E¢ BOIOHHKA. Pesyr-
Tarty, nooujenn nomohy Pynre—Kyra—®enbdeprose meroze, npudmmkHO ce crnaxy ca I'bJ.

KibyuHe pujeun: Moiexya BOJOHMKA, KPUTUYHA TeMIeparTypa, Ipena3 perylapHOCT—

xaoc, [ n3oup-buienoosa jenHaunna.



