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Abstract: We have studied lattice self-avoiding polygons with attractive interaction 

between contacts which are nonconsecutively visited nearest neighboring sites. The lattice 

of choice is 3-simplex fractal lattice and the model represents a ring polymer in non-

homogeneous solution whose quality depends on the interaction parameter. It has already 

been shown, by the renormalization group approach, that polymer on this lattice at any 

nonzero temperature can exist only in the extended phase. Universal critical exponents, 

which do not depend on the interaction strength, have also been determined. In this paper we 

are concerned with two nonuniversal quantities: the connectivity constant related with the 

free energy of the model and the mean number of contacts related with the internal energy. 

We have shown that the connectivity constant is an unboundedly increasing function of the 

interaction strength, while the mean number of contacts is an increasing function 

asymptotically approaching a limiting value equal to one half, which is the mean number of 

contacts in the case of Hamiltonian walks on the same lattice. This limiting value is expected, 

since in the limit of infinite interaction (or zero temperature) each self-avoiding walk on 3-

simplex lattice becomes maximally compact and occupies all lattice points, i.e. becomes 

Hamiltonian walk. 
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1. INTRODUCTION 

 

Behavior of a linear polymer in dilute solution 

is well studied topic in polymer science. At high 

temperatures, i.e. good solvent regime, excluded-

volume effects prevail, and polymer is in an extended 

phase with swollen conformations. At low 

temperatures, i.e. bad solvent regime, attractive 

interaction between monomers prevails, and polymer 

is in a collapsed phase with compact conformations. 

Transition between high and low temperature phases 

(collapse transition) happens at some intermediate, 

the so called θ-temperature, and exactly at this 

temperature polymer behaves as an ideal polymer 

chain [1,2]. 

Self-avoiding walks (SAWs) on a lattice are 

random walks that never visit the same lattice point 

more than once [3]. Closed self-avoiding walks, i.e. 

self-avoiding walks whose starting and ending points 

coincide are called self-avoiding polygons (SAPs) 

[4]. In its simplest form, SAWs and SAPs are used to 

model linear and circular (i.e. ring) polymers, 

respectively, in good solvents. The property of non 

self-intersection mimics the excluded volume effects 

in a real polymer. Introduction of an attractive 

interaction between contacts, i.e. nearest neighboring 

lattice sites visited non-consecutively by the self-

avoiding walk, converts the ordinary SAW model 

into the interacting SAW (ISAW) model, and 

similarly the SAP into the interacting SAP (ISAP). 

These interacting models are able to capture collapse 

transition, and have been extensively studied on 

lattices with translational invariance in two and three-

dimensional space [5‒18]. 

Studies of ISAW model on translationally 

invariant lattices assume that the polymer is 
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immersed in a homogeneous solution. Usually, 

various types of inhomogeneities dispersed in 

solution spoil its translational invariance, so that 

fractal lattices, with no such symmetry, become more 

convenient. Moreover, fractal lattices are scale 

invariant (a property that enables exact application of 

the renormalization group technique) which has led to 

many exact results regarding universal properties 

(properties that do not depend on the interaction 

parameter and some particular lattice details) of the 

model on various fractal lattices [19‒24]. 

Specifically, it has been shown that 3-simplex fractal 

lattice and two-dimensional Sierpinski Gasket lattice 

do not allow for the collapse transition, implying that 

the polymer on these two lattices can exist only in the 

extended phase for all finite values of the interaction 

parameter [19,20]. It has also been shown that the 

studied model on these two lattices belongs to the 

same universality class, and universal critical 

exponents in the extended phase - metric exponent ν 

that determines the gyration radius of a polymer and 

entropic exponents γ and 𝛼  that govern the scaling 

laws of the partition function of the walk and polygon 

models, respectively, have been determined 

[19,22,25,26]. 

In this paper we give our contribution to the 

understanding of the ISAP model behavior on 3-

simplex fractal lattice by studying two non-universal 

quantities. Precisely, analyzing the generating 

function of the model, we have obtained the 

connectivity constant and the mean number of 

contacts per monomer, related with the model’s free 

energy and the mean number of contacts, 

respectively, per monomer, in the thermodynamic 

limit. We determine how each of these quantities 

depend on the interaction parameter. Numerical study 

of the comprehensive ISAP model, in the whole 

temperature range, as presented here, should shed 

light on relationship between ISAP model and other 

theoretical models applicable only in some specific 

temperature domains.  

The paper is organized as follows. ISAP model 

is defined in section 2. Relevant fractal lattice, 

method for the calculation of the quantities of interest 

and obtained results are presented in section 3. 

Finally, summary and conclusions are given in 

section 4.  

  

 

2. ISAP MODEL 

 

A self-avoiding polygon representing one 

possible conformation of circular polymer on the 

square lattice is shown in Figure 1. Visited lattice sites 

represent monomers (or collection of monomers) 

along the polymer backbone, while the steps of the 

polygon represent chemical bonding between them. 

Attractive interaction between monomers that are 

nearest neighbors but not chemically bonded is 

incorporated through an interaction energy 𝜀 (𝜀 < 0) 

between contacts.   

 

 

Figure 1. Self-avoiding polygon with N=26 steps and 

M=7 contacts. This polygon contributes to the term 𝑥26𝑢7 

in the generating function (4) 

 

This interaction is marked with wiggly line in Figure 1. 

Assuming that each polygon consists of exactly 𝑁 steps 

(has perimeter N), partition function in canonical 

ensemble is given as  

𝑍𝑁 = ∑ 𝑒−𝛽𝐸(𝑃𝑁)
𝑃𝑁

,                                                      (1) 

where 𝑃𝑁  stands for polygon of length 𝑁, 𝐸(𝑃𝑁) is 

the energy of each such polygon, and 𝛽 = 1/𝑘𝑇 . 

Denoting the number of contacts in each 

configuration as 𝑀(𝑃𝑁), the energy of this polygon is 

𝐸(𝑃𝑁) = 𝑀(𝑃𝑁)𝜀. Associated Boltzmann weight is 

𝑒𝛽𝑀(𝑃𝑁)|𝜀| = 𝑢𝑀(𝑃𝑁) , where it has been taken into 

account the fact that 𝜀 < 0, and interaction parameter 

𝑢 =  𝑒𝛽|𝜀| has been introduced. Then, sum (1) can be 

written as 

𝑍𝑁(𝑢) = ∑ 𝑢𝑀(𝑃𝑁)
𝑃𝑁

= ∑ ∁𝑁(𝑀)𝑢𝑀𝑀𝑚𝑎𝑥
𝑀=0 ,              (2) 

where ∁𝑁(𝑀)  is the number of self-avoiding 

polygons of length 𝑁 and 𝑀 contacts, normalized per 

lattice site. It is convenient to work with variable 

polymer length controlled by the fugacity 𝑥 > 0 

assigned to each step of the polygon (or visited lattice 

site). Associated grand canonical partition function is  

𝐺(𝑥, 𝑢) = ∑ 𝑍𝑁(𝑢)𝑥𝑁∞
𝑁=0 .                                                (3) 

In mathematics, this power series represents a 

generating function for a sequence of numbers {𝑍𝑁}. 

With (2), expression (3) can also be written as 

𝐺(𝑥, 𝑢) = ∑ ∑ ∁𝑁(𝑀)𝑢𝑀𝑀𝑚𝑎𝑥
𝑀=0 𝑥𝑁.∞

𝑁=0                          (4) 
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Each polygon with 𝑀  contacts and 𝑁  steps has a 

weight 𝑢𝑀𝑥𝑁, so that the generating function is the 

total weight of all possible polygons from minimal 

length to maximal infinite length. 

It is conjectured that the asymptotic, large 𝑁 

behavior, of partition function (1) in high temperature 

regime is given by 

𝑍𝑁(𝑢)~𝐴𝜇(𝑢)𝑁𝑁𝛼−3,                                            (5) 

where the base 𝜇  is called connectivity constant, a 

non-universal quantity which depends on the 

interaction parameter 𝑢  as well as on the lattice 

details. Assuming that relation (5) holds, it can easily 

be shown that the radius of convergence of power 

series (3) is 𝑥𝑐(𝑢) =
1

𝜇(𝑢)
 , and in this context 𝑥𝑐  is 

called critical fugacity. Also, from the definition of 

free energy 𝐹 = −
1

𝛽
ln 𝑍, and relation (5), it follows 

that the free energy per monomer in the 

thermodynamic limit is given as 

𝑓 = lim
𝑁→∞

𝐹

𝑁
= −

1

𝛽
ln 𝜇,                                                            (6) 

which elucidates the physical meaning of the 

connectivity constant. Exponent 𝛼 in the asymptotic 

relation (5) is universal, and depends only on the 

lattice dimensionality. It determines the leading 

singular behavior of the generating function 𝐺, and it 

can be shown that the following relation holds 

𝐺(𝑥)~𝑐𝑜𝑛𝑠𝑡(𝑥𝑐 − 𝑥)2−𝛼 as 𝑥 → 𝑥𝑐 from below. 

The mean number of contacts by definition is 

〈𝑀〉 =
1

𝐺
∑ ∑ 𝑀∁𝑁(𝑀)𝑢𝑀𝑥𝑁𝑀𝑚𝑎𝑥

𝑀=0 ,∞
𝑁=0                        (7) 

and can be obtained from the generating function as  

〈𝑀〉 =
𝜕 ln 𝐺

𝜕 ln 𝑢
 ,                                                                              (8) 

while the mean number of steps is  

〈𝑁〉 =
1

𝐺
∑ 𝑁𝑍𝑁(𝑢)𝑥𝑁,∞

𝑁=0                                                   (9) 

and is given by  

 〈𝑁〉 =
𝜕 ln 𝐺

𝜕 ln 𝑥
 .                                                                           (10) 

It is assumed that partial derivatives in (8) and (10), 

for each 𝑢, are calculated at the corresponding value 

of 𝑥𝑐 . Combining equations (8) and (10), the mean 

number of contacts per step is given as 

𝑚 =
〈𝑀〉

〈𝑁〉
=

𝑢

𝑥

𝜕𝐺

𝜕𝑢
𝜕𝐺

𝜕𝑥

 ,                                                                    (11) 

and this quantity determines internal energy per step 

in the thermodynamic limit, which is equal to 𝑚𝜀.  

 

 

3. ISAP MODEL ON 3-SIMPLEX LATTICE 

 

Deterministic 3-simplex fractal lattice is 

constructed iteratively. In the first step of 

construction three points are joined into the form of 

the unit triangle. The obtained structure is called the 

first order generator or initiator. In the second step, 

three unit triangles are joined into the form of triangle 

in such a way that the vertices of neighboring 

triangles are split. Repeating this procedure infinitely 

many times, full fractal lattice is obtained. The 

structure obtained in the arbitrary r-th step of 

construction is called r-th order generator and it is 

denoted as 𝐺𝑟.  First three generators are shown in 

Figure 2. The number of lattice sites in 𝐺𝑟 is 3𝑟. 

 

 
Figure 2. First three steps of the iterative construction of 

3-simplex fractal lattice  

 

 
Figure 3. Schematic representation of all self-avoiding 

polygons on an arbitrary order generator of 3-simplex 

lattice. Each polygon on generator 𝐺𝑟+1 consists of three 

open self-avoiding walks, denoted by 𝐵, one through each 

𝐺𝑟 . For 𝐵 walk through upper 𝐺𝑟  two possible different 

realizations through its sub-generators 𝐺𝑟−1 are 

schematically shown 

 

We will utilize self-similar structure of the 3-

simplex lattice, and following [20] determine the 

generating function (3) of ISAP model recursively. We 

notice that each polygon on 𝐺𝑟+1 can be formed from 

open self-avoiding walks through its sub-generators 

𝐺𝑟 . One such polygon on 𝐺𝑟+1 , and its three 

composing parts, open self-avoiding walks through 

each 𝐺𝑟 , are schematically shown in Figure 3. Self-

avoiding walks that start at one apex of any generator 

of order 𝑟 and end at any of the other two apexes of 

the same generator are denoted as 𝐵  type of the 

walks. These are walks of different length which 

include both, walks that visit and walks that do not 

visit the third apex of the generator. The overall 

weight of all polygons on 𝐺𝑟+1  is product of the 

overall weights of its composing parts through 𝐺𝑟. If 

the weight of all walks of type 𝐵 on 𝐺𝑟 is denoted by 
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𝐵𝑟, then the weight of all polygons on 𝐺𝑟+1 is equal 

to (𝐵𝑟)3. Normalizing this weight per lattice site of 

𝐺𝑟+1 and summing over generators of all order 𝑟, we 

obtain the generating function 

𝐺(𝑥, 𝑢) =
1

3
𝑥3 + ∑

1

3𝑟+1
∞
𝑟=1 (𝐵𝑟(𝑥, 𝑢))3.                  (12) 

The first term, 
1

3
𝑥3 , is the weight per site of the only 

one polygon on the unit triangle. For determination of 

the weights of walks 𝐵 on 𝐺𝑟  we will set recursive 

equations on the basis of Figure 3. Two possible 

situations on encircled 𝐺𝑟  are schematically 

represented in the upper right part of the figure. The 

first scheme represents all walks of type 𝐵 on 𝐺𝑟 that 

traverse only two of its sub-generators 𝐺𝑟−1, and the 

weight of all such walks is (𝐵𝑟−1)2 . The second 

scheme represents all walks of type 𝐵  on 𝐺𝑟  that 

traverse each of its three sub-generators 𝐺𝑟−1 , and 

one can notice that if the walks 𝐵  through sub-

generators denoted as 2 and 3 visit their third apex, 

then an additional interaction between apexes of these 

two neighboring triangles occurs. In order to account 

properly for this interaction, among all walks of type 

𝐵 on sub-generators 2 and 3, we will distinguish those 

walks that visit the third apex of these generators and 

denote them as 𝐶 (see Figure 4), while their weights 

on 𝐺𝑟−1  will be denoted as 𝐶𝑟−1 . If the additional 

interaction was not present, the weight of all walks in 

second scheme would be (𝐵𝑟−1)3. Since among all 

walks of type 𝐵  through generators 2 and 3, only 

walks of type 𝐶 contribute to this interaction, we will 

subtract their contribution from the weight (𝐵𝑟−1)3 

and add an additional term with the new interaction 

incorporated. It then follows that recursion relation 

for the weight 𝐵𝑟 can be written as 

𝐵𝑟 = 𝐵𝑟−1
2 + 𝐵𝑟−1

3 − 𝐵𝑟−1𝐶𝑟−1
2 + 𝑢𝐵𝑟−1𝐶𝑟−1

2 ,    (13) 

that is  

𝐵𝑟 = 𝐵𝑟−1
2 + 𝐵𝑟−1

3 + (𝑢 − 1)𝐵𝑟−1𝐶𝑟−1
2 .               (14) 

 

 

Figure 4. Schematic representation of walks of type 𝐵 , as 

well as their subset, the walks 𝐶, together with their 

weighted initial conformations on the unit triangle 

This equation involves weights 𝐶𝑟−1, for which, by 

the similar reasoning, recursion relation is established 

𝐶𝑟 = 𝐵𝑟−1
2 𝐶𝑟−1 + (𝑢 − 1)𝐶𝑟−1

3 .                              (15) 

Initial values for relations (14) and (15) are 

defined on the unit triangle. In order that each 

polygon of perimeter 𝑁 has weight 𝑥𝑁, to each vertex 

visited by the walks 𝐵 on the unit triangle, a weight 𝑥 

is assigned. Also, weight 𝑢 is assigned to contacts. 

Initial weighted walks are shown in Figure 4, from 

which their starting weights are given as  

𝐵1 = 𝑥2 + 𝑥3𝑢,                                                                     (16) 

and 

𝐶1 = 𝑥3𝑢.                                                                                  (17) 

Interaction parameter 𝑢 enters not only initial values, 

but also recursion equations (14) and (15). But, 

defining new variable 𝐴𝑟  as √(𝑢 − 1) 𝐶𝑟 = 𝐴𝑟 , 

these equations become 

𝐵𝑟 = 𝐵𝑟−1(𝐵𝑟−1 + 𝐵𝑟−1
2 + 𝐴𝑟−1

2 ),                              (18) 

and 

 𝐴𝑟 = 𝐴𝑟−1(𝐵𝑟−1
2 + 𝐴𝑟−1

2 ),                                            (19) 

so that interaction parameter is removed. It now 

enters initial conditions only, which are given with 

expression (16) for variable 𝐵, and with  

 𝐴1 = 𝑥3𝑢√𝑢 − 1 ,                                                               (20) 

for variable 𝐴.  

  

3.1. Calculation and results 

 

In order to determine connectivity constant, we 

first notice that the generating function (12) can be 

obtained as 𝐺 = lim
𝑟→∞

𝑃𝑟 , where 𝑃𝑟 is defined 

recursively as 

𝑃𝑟+1 = 𝑃𝑟 +
1

3𝑟+1
(𝐵𝑟)3,                                                     (21) 

with the initial value 𝑃1 =
1

3
𝑥3 . Iterating equation 

(21), together with recurrence equations (18) and (19), 

starting from their initial values, for each 𝑢 ≥ 1 we 

determine radius of convergence 𝑥𝑐(𝑢)  of the 

generating function and find connectivity constant 𝜇 as 

𝜇(𝑢) =
1

𝑥𝑐(𝑢)
. Numerical results for some chosen 

values of 𝑢 are given in Table 1, and overall results are 

shown graphically in Figure 5.  

 

 

Table 1. Numerically calculated values of the connectivity constant 𝜇 for some values of the interaction parameter 𝑢. 

The last digit is rounded off.  

𝑢 1.0 1.5 2 5 10 50 100 200 500 

μ 1.618034 1.749171 1.869979 2.483085 3.288930 7.086544 10.00648 14.14508 22.36178 
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Figure 5. Logarithm of the connectivity constant μ versus 

logarithm of the interaction parameter u 

 

As one can see in Table 1 and Figure 5, 

connectivity constant is a monotonically increasing 

function of the interaction parameter 𝑢. Two limiting 

values of 𝑢 should be commented on. Firstly, the case 

𝑢 = 1  corresponds to |𝜀| = 0  or 𝑇 = ∞, that is, to 

non-interacting SAW model, for which connectivity 

constant has been calculated exactly to be 𝜇(𝑢 =

1) =
2

√5−1
 [25]. Our numerical value agrees with the 

exact value, and it is calculated with more than twenty 

significant figures, although only seven are presented. 

Secondly, limit 𝑢 → ∞  corresponds to 𝑇 → 0  or 

|𝜀| → ∞ , that is zero temperature or infinite 

interaction energy limit. At zero temperature, free 

energy is equal to internal energy, and in the 

thermodynamic limit it can be expressed as 𝑓 =
−𝑚|𝜀| , where 𝑚  is the mean number of contacts. 

Combining this expression and equation (6), relation 

ln 𝜇 = 𝑚 ln 𝑢  can be established. In the next 

paragraph it would be shown that 𝑚 →
1

2
 when 𝑢 →

∞ . Thus, relation 𝜇~ 𝑢
1

2  should hold in this limit, 

from which it follows that connectivity constant 

increases with 𝑢 without a bound. 

Mean number of contacts, 𝑚 , given by 

equation (11) can be obtained as the limit 𝑚 =
lim
𝑟→∞

𝑚𝑟, where  

𝑚𝑟 =
𝑢

𝑥

𝑃𝑟𝑢
′

𝑃𝑟𝑥
′ .                                                                               (22) 

In this expression 𝑃𝑟𝑢
′  is a new variable which stands 

for the partial derivative of 𝑃𝑟 with respect to 𝑢 , i.e. 

𝑃𝑟𝑢
′ =  

𝜕𝑃𝑟

𝜕𝑢
, and similarly 𝑃𝑟𝑥

′ =
𝜕𝑃𝑟

𝜕𝑥
. Recursion 

relations for the new variables are obtained after 

taking the partial derivatives of equation (21), and are 

given as 

𝑃𝑟+1,𝑢
′ = 𝑃𝑟𝑢

′ +
1

3𝑟
(𝐵𝑟)2𝐵𝑟𝑢

′ ,                                           (23) 

and  

𝑃𝑟+1,𝑥
′ = 𝑃𝑟𝑥

′ +
1

3𝑟
(𝐵𝑟)2𝐵𝑟𝑥

′ ,                                            (24) 

where 𝐵𝑟𝑢
′ =

𝜕𝐵𝑟

𝜕𝑢
 and 𝐵𝑟𝑥

′ =
𝜕𝐵𝑟

𝜕𝑥
 are another two new 

variables. Recursion relations for these variables are 

obtained from relation (18), which in turn need two 

more variables 𝐴𝑟𝑢
′  and 𝐴𝑟𝑥

′  defined similarly as 

previous variables. In this way, iterating altogether 

ten recursive equations, starting from the initial 

values, we obtain mean number of contacts 

numerically. Results are presented in Table 2 and 

Figure 6. It should be mentioned that in order to get 

five significant figures in the value of 𝑚 , critical 

value 𝑥𝑐 should be calculated with more than twenty 

significant figures. 

  
Table 2. Numerically calculated values of the mean number of contacts 𝑚 for some values of the interaction 

parameter 𝑢. The last digit is rounded off.  

𝑢 1 5 10 50 200 500 1000 1500 

𝑚 0.13383 0.33064 0.41348 0.49299 0.49937 0.49985 0.49995 0.49997 

 

From the Table 2 and Figure 6, one can 

perceive that the mean number of contacts is 

monotonically increasing function of the interaction 

parameter 𝑢 , which asymptotically tends to the 

limiting value equal to 0.5. Increasing the value of 𝑢, 

walks with larger number of contacts, with large 

weights, become more probable, and in the limit 𝑢 →
∞  only compact walks with maximal number of 

contacts contribute to the partition function. These 

self-avoiding walks with maximal number of contacts 

visit each site of the lattice, so they are Hamiltonian 

walks by definition. If the coordination number of 

lattice is 𝑞, and we consider a compact polygon or 

compact open walk, then starting from some visited 

lattice site (which is not starting or ending point in the 

case of the open walk) there are 𝑞 − 2 

nonconsecutively visited nearest neighboring sites. 

These are contacts shared by two sites, so that the 

maximal number of contacts per lattice site is 
𝑞−2

2
 . 

Coordination number of each lattice site of 3-simplex 

lattice is 3 (except the three apexes of the largest 

generator), so that, theoretically, maximal number of 

contacts is 
1

2
 . Our calculation shows that this is 

exactly the 𝑢 → ∞  limit of the mean number of 

contacts of the studied ISAP model on 3-simplex 

lattice. Moreover, this also confirms correspondence 

between the ISAW model on 3-simplex lattice in the 
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limit of zero temperature or infinite attractive 

interaction and the Hamiltonian walk model on the 

same lattice. 

 

 

Figure 6. Mean number of contacts 𝑚 as a function of the 

interaction parameter 𝑢. Horizontal dashed line set at the 

value 𝑚∗ = 0.5 denotes asymptotic limiting value of 𝑚 

 

 

4. SUMMARY AND CONCLUSIONS  

 

In the present paper we have studied 

Interacting Self-Avoiding Polygon model on  

3-simplex fractal lattice. The model represents a 

circular polymer in dilute solution which is non-

homogeneous and represented by 3-simplex fractal 

lattice. We have determined dependence of the 

connectivity constant and the mean number of 

contacts on the interaction parameter. We have found 

that the connectivity constant increases boundlessly 

with the interaction parameter, while the mean 

number of contacts increases with the interaction 

parameter, but asymptotically reaches its limiting 

value of 0.5. This limiting value is the mean number 

of contacts in the case of Hamiltonian walks on 3-

simplex lattice, which confirms that the zero 

temperature or infinite interaction strength limit of the 

ISAW model is Hamiltonian walk model. ISAW 

model on 3-simplex lattice does not undergo a 

collapse transition at any finite temperature, and 

compact phase is possible only at absolute zero. It 

would be very instructive to conduct similar research 

on some fractal lattices for which it has been proven 

that the collapse transition exists for non-zero 

temperature. Such studies could explore the compact 

phase and resolve the issue of whether the 

Hamiltonian walk model corresponds to ISAW model 

in all compact regime, or only at zero temperature. 

Also, a correspondence between presented theoretical 

model and a real polymer behavior in non-

homogeneous media could be properly examined. 
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НЕУНИВЕРЗАЛНЕ ОСОБИНЕ САМОИНТЕРАГУЈУЋЕГ ПОЛИМЕРА У НЕХОМОГЕНОМ  

ОКРУЖЕЊУ МОДЕЛОВАНОМ 3-СИМПЛЕКС ФРАКТАЛНОМ РЕШЕТКОМ  

 

 Сажетак: Проучавали смо самонепресијецајуће полигоне са привлачном 

интеракцијом између контаката дефинисаних као неузастопно посјећени сусједни чворови 

на решетки. Решетка по избору је 3-симплекс фрактална решетка, и модел представља 

прстенасти полимер у нехомогеном растварачу чији квалитет зависи од интеракционог 

параметра. Примјеном методе ренормализационе групе, до сада је показано да се полимер 

на тој решетки и било којој ненултој температури може налазити само у проширеној фази. 

Универзални критични експоненти, који не зависе од јачине интеракције, такође су 

одређени. Нас у овом раду занимају двије неуниверзалне величине: константа повезаности 

која одређује слободну енергију модела и средњи број контаката који одређује унутрашњу 

енергију. Показали смо да је константа повезаности неограничено растућа функција јачине 

интеракције, док је средњи број контаката растућа функција која се асимптотски 

приближава граничној вриједности једнакој једнa половинa, што је заправо средњи број 

контаката за случај Хамилтонових шетњи на истој решетки. Та гранична вриједност је и 

очекивана, јер у лимесу бесконачне интеракције (или нулте температуре) свака 

самонепресијецајућа шетња на 3-симплекс решетки постаје максимално компактна и 

посјети све чворове решетке, тј. постаје Хамилтонова шетња. 

Кључне ријечи: полимер, самонепресијецајући полигон, фрактал, неуниверзалне 

особине.  

 
 

 

 

Paper received: 6 August 2020 

Paper accepted: 23 November 2020  


