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Abstract: We studied the critical properties of flexible polymers, modelled by self-

avoiding random walks, in good solvents and homogeneous environments. By applying the 

PERM Monte Carlo simulation method, we generated the polymer chains on the square and 

the simple cubic lattice of the maximal length of N=2000 steps. We enumerated 

approximately the number of different polymer chain configurations of length N, and 

analysed its asymptotic behaviour (for large N), determined by the connectivity constant μ 

and the entropic critical exponent γ. Also, we studied the behaviour of the set of effective 

critical exponents 𝜈𝑁 , governing the end-to-end distance of a polymer chain of length N. We 

have established that in two dimensions 𝜈𝑁 monotonically increases with N, whereas in three 

dimensions it monotonically decreases when N increases. Values of 𝜈𝑁, obtained for both 

spatial dimensions have been extrapolated in the range of very long chains. In the end, we 

discuss and compare our results to those obtained previously for polymers on Euclidean 

lattices. 
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1. INTRODUCTION 

 

The self–avoiding walk (SAW) is a random walk 

that must not intersect itself, and on a lattice, it can be 

formed as a random path of a SAW walker that steps on 

neighbouring previously non-visited lattice sites. The 

SAW property of path non-overlapping emulates very 

well the so-called excluded volume effect of polymers, 

and the SAW model is widely accepted as the standard 

model of a linear polymer in a dilute solution [1]. The 

SAW model can be successfully applied to study a 

single polymer chain in both good (non-consecutive 

monomers of a polymer chain do not interact 

mutually) and poor solvents (there are distinct 

monomer-monomer interactions within a polymer 

chain) [2]. In research of statistical properties of SAWs, 

the special interest is devoted to the critical behaviour of 

very long SAW chains (𝑁 → ∞) described by various 

critical exponents. It has been shown that the SAW model 

is equivalent to the n-component spin model in the limit 

𝑛 → 0 [3], so that a correspondence between models of 

linear polymers and magnetic systems occurs. For most 

of the studies of statistical properties of SAWs a 

necessary step is finding the number of different 

configurations (i.e. the number of possible states) for an 

N-step SAW system. To investigate the asymptotic 

behaviour of SAWs it is plausible to enumerate SAWs 

of finite lengths N and then extrapolate the obtained 

results of related quantities in the limit 1/𝑁 → 0 of 

very long chains. 

Exact counting of different SAW configurations of 

the length N on a lattice is very demanding combinatorial 

task, and so far SAWs of the maximal length 𝑁𝑚𝑎𝑥=79 

[4] have been enumerated on the square lattice, whereas 

on the simple cubic lattice the maximal length is 

𝑁𝑚𝑎𝑥=36 [5]. The reached values for 𝑁𝑚𝑎𝑥 are still far 

from the asymptotic region of very long chains, and 

another method for sampling SAWs for larger 𝑁𝑚𝑎𝑥 

should be used. To this end various types of Monte Carlo 

methods have been invented [6], and in this study we 

utilise the pruned-enriched Rosenbluth-Rosenbluth 

method (PERM) [7], which is a static Monte Carlo 

algorithm for SAWs sampling. The PERM enables 

building of SAWs of different lengths N (up to 

predefined maximal value), and it appeared to be very 

efficient for approximate counting of SAW 

configurations of large length. Also, during the 

simulation of SAWs with this method it is possible to 
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evaluate the averages of various observables within 

created N-step SAWs ensembles, and then, from 

obtained data, analyse their critical behaviour.  

The present paper is organized in the following 

way. In section 2, we define the main quantities 

related to the lattice SAW model and expose the basic 

ideas of the PERM Monte Carlo method for 

simulation of SAWs on the square and the simple 

cubic lattice. In section 3 we present the obtained 

numerical results for critical exponents ν (related to the 

mean squared end-to-end distance of SAWs) and γ 

(associated with the total number of distinct SAWs), 

as well as results for the connectivity constant μ 

representing the effective coordination number of the 

SAW (i.e. the average number of possible next steps 

to the walker having already made a large number of 

steps). In the same section we discuss and compare 

our findings with those obtained by other methods. 

Eventually, a short conclusion is given in section 4.  

 

 

2. SIMULATION OF SELF-AVOIDING 

WALKS ON LATTICES WITH 

PRUNED-ENRICHED ROSENBLUTH-

ROSENBLUTH METHOD 

 

In order to describe the statistics of the SAW 

model on a lattice we assign the weight x (fugacity) to 

each step of the walk, so that a SAW consisting of N 

steps has the weight xN. Thus, the generating 

function for SAWs of all possible lengths is of the 

form  

𝐶(𝑥) = ∑ 𝐶𝑁 𝑥
𝑁∞

𝑁=1 .                                          (1) 

Here 𝐶𝑁 is the total number of distinct N -step SAWs 

which, in the long chain limit, behaves as  

𝐶𝑁~𝜇𝑁𝑁𝛾−1,                                                          (2) 

where γ is the entropic critical exponent, and μ is the 

connectivity constant. Another quantity describing 

metric properties of N-step SAWs is the mean 

squared end-to-end distance ⟨𝑅𝑁
2 ⟩, determined by the 

scaling law 

⟨𝑅𝑁
2 ⟩~𝑁2𝜈,                                                             (3) 

where ν is the corresponding critical exponent, 

presuming that the number of steps N is quite large. 

Here we note that ν and γ are universal critical 

exponents, that is (for the SAW model) their values 

only depend on the space dimension of underlying 

lattice, while the connectivity constant μ is a lattice 

dependent quantity. 

In this paper we apply the PERM Monte Carlo 

method to calculate the connectivity constant µ and 

critical exponents γ and ν of flexible SAWs on the 

square and simple cubic lattice. The PERM method is 

an improved version of the Rosenbluth-Rosenbluth 

(RR) chain growth algorithm [8] for sampling SAWs 

of different lengths on a lattice. Starting from an 

arbitrary lattice site, in RR method, the SAW chain 

develops by adding a new step to the existing SAW 

chain. The added step is chosen randomly from the 

set of free neighbouring sites, and the process of SAW 

growth (from the origin, with 𝑁 = 0) is called the 

tour. The step adding procedure is repeated until the 

chain reaches the given maximal length 𝑁𝑚𝑎𝑥, or the 

SAW walker gets stuck (i.e. there is no free 

neighbouring sites for further growth). The SAWs 

generated in RR method are biased, because the 

occupied neighbouring sites are not taken into 

account for the next step random choice, so that the 

sampled N-step walks have different statistical 

weights depending on their configuration. This 

weight, for an N-step SAW in RR method is  

𝑊𝑁 = ∏ 𝑎(𝑛)𝑁−1
𝑛=0 ,                                                  (4) 

where 𝑎(𝑛) is atmosphere of the walk [9], that is the 

number of free (previously non-visited) neighbouring 

sites for a growing SAW after 𝑛 steps (𝑛 < 𝑁). For the 

square lattice the beginning value for the atmosphere 

is 𝑎(0) = 4, while for the simple cubic lattice it is 

𝑎(0) = 6 (see Figure 1). The total number of distinct 

SAWs 𝐶𝑁  in RR method can be evaluated as an 

average 

𝐶𝑁 = ⟨𝑊𝑁⟩ =
1

𝑠0
∑ 𝑊𝑁

(𝑖)𝑠𝑁
𝑖=1 ,                                    (5) 

where 𝑠0 is the number of starting SAWs and 𝑠𝑁 is 

the number of SAW samples of length N [10]. 

Calculation of 𝐶𝑁 enables us to find out the values of 

μ and γ, while the metric critical exponent ν can be 

extracted from ⟨𝑅𝑁
2 ⟩ , which in RR method can be 

calculated as 

⟨𝑅𝑁
2 ⟩ =

∑ 𝑊𝑁
(𝑖)

[𝑅𝑁
2 ](𝑖)𝑠𝑁

𝑖=1

∑ 𝑊𝑁
(𝑖)𝑠𝑁

𝑖=1

 ,                                          (6) 

where [𝑅𝑁
2 ](𝑖)  is the squared end-to-end distance of 

an N-step SAW sample whose RR weight is 𝑊𝑁
(𝑖)

.  
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Figure 1. Examples of SAW path on the square (d=2) and on the simple cubic lattice (d=3) with N=14 and N=16 steps, 

respectively. The full circles are starting, and open ones are ending points of the SAWs. The RR weight of the SAW on the 

square lattice is W14= 4 · 38 · 22 · 3·22, while for the SAW on the simple cubic lattice it is W16=6·54·4·52·42·5·4·5·4·5·3. 

 

 

The RR method becomes ineffectual when we 

want to create longer SAW samples, because an 

accented attrition of starting SAWs appears (i.e. large 

number of SAWs became trapped before reaching a 

desired length). Besides, the obtained SAW statistics 

are usually fairly distorted since the SAW samples 

with very high RR weights (which are infrequent) 

produce a very large variance in RR weight statistics. 

To resolve these problems an upgraded version of RR 

method, called the PERM, has been introduced, 

where we prune SAWs with low weights and enrich 

SAWs with large weights [7]. To apply pruning or 

enriching transformation of an N -step SAW, for the 

SAW weight we define two milestones 𝑊𝑁
< and 𝑊𝑁

>, 

by the relations  

𝑊𝑁
< =

1

5
⟨𝑊𝑁⟩ (

𝑠𝑁

𝑠0
)

2
, 𝑊𝑁

> = ⟨𝑊𝑁⟩ (
𝑠𝑁

𝑠0
)

2
.          (7)  

If 𝑊𝑁 < 𝑊𝑁
< , the SAW is pruned (killed) with the 

probability 1/2. If the SAW survives pruning, we 

double its weight (1 ∙ 𝑊𝑁 →
1

2
∙ 2𝑊𝑁). On the other 

hand, in the case that 𝑊𝑁 > 𝑊𝑁
>  we apply the 

enriching transformation, that is we replace a SAW 

configuration of the weight 𝑊𝑁  with two copies of 

the halved weight (1 ∙ 𝑊𝑁 → 2 ∙
𝑊𝑁

2
). In this way the 

N-step SAW weights 𝑊𝑁 of different SAW samples 

stay close to ⟨WN ⟩. Here we note that pruning and 

enriching transformations do not alter the values of 

𝐶𝑁 and ⟨𝑅𝑁
2 ⟩ calculated from (5) and (6). 

 

 

3. RESULTS AND DISCUSSION 

 

Applying the PERM method, we have created 

SAW chains of various lengths N (up to 𝑁𝑚𝑎𝑥 =
2000 ), on both the square and the simple cubic 

lattice. In one simulation session, for each N we have 

made a set of SAW chains consisting of 𝑠𝑁 ≃ 4.37 ∙
108  SAW samples on the square lattice and 𝑠𝑁 ≃
1.22 ∙ 108  samples on the simple cubic lattice. To 

analyse the obtained large sets of data we follow the 

approach developed in [11], where we have studied 

semi-flexible polymer chains on the square lattice. 

Here we expanded the simulation data for flexible 

polymer chains in two dimensions and extend this 

study in three dimensions.  

Since in our Monte Carlo experiment, we have 

created SAWs with finite length N, the formula (2) 

for the total number of different configurations 

(which is valid for 𝑁 → ∞) should be corrected to 

𝐶𝑁 = 𝐴𝐶𝜇𝑁𝑁𝛾−1 (1 + ∑
𝑐𝑖

𝑁𝑖
∞
𝑖=1 + ∑

𝑐𝑖
′

𝑁Δ+𝑖
∞
𝑖=0 ) .       (8) 

The first sum (with integer powers) corresponds to 

the analytical correction terms, while the second one 

(where Δ  is not an integer) describes the non-

analytical correction terms. In two dimensions Δ =
3/2 > 1 [12] and the leading correction term in (8) is 

analytical 1/N, while in three dimensions Δ =
0.528(12) < 1  [13] so that the leading correction 

term is non-analytical 1/𝑁Δ. To evaluate the values 

of µ and γ we analysed the ratio 

𝐶𝑁+1

𝐶𝑁
= 𝜇 (1 + (𝛾 − 1)

1

𝑁
+ ⋯ ) ,                           (9) 

whereupon one can see that the leading correction 

term is 1/N for both 𝑑 = 2 and 𝑑 = 3 case. We notice 

that, in 𝑑 = 2 the second correction term is 1/𝑁2 , 

while in 𝑑 = 3 it is stronger 1/𝑁1.528. From (9) we 

see that for large enough N, the ratio 
𝐶𝑁+1

𝐶𝑁
 should 

display a linear dependence on 1/𝑁 . Since in our 

Monte Carlo experiment, for various N, we have 

measured the values of 𝐶𝑁  (in accordance with the 



Ivan Živić, Monte Carlo simulations of a polymer chain model on euclidead lattices  

Contemporary Materials, X‒2 (2019)                                                                                                          Page 170 of 174 

 

relation (5)), we have been able to study the ratio 
𝐶𝑁+1

𝐶𝑁
, as function of N and 1/N (see Figure 2), for both 

square (𝑑 = 2) and simple cubic (𝑑 = 3) lattice. We 

see that the function 
𝐶𝑁+1

𝐶𝑁
(1/𝑁)  is linear, so that 

using (9) one can determine µ and γ fitting the 

obtained Monte Carlo data, presented in Figure 2. The 

fitting technique is similar to the one applied in [11]. 

We constitute sets of data {
1

𝑁
,

𝐶𝑁+1

𝐶𝑁
} where N belongs 

to the range [𝑁𝑚𝑖𝑛, 𝑁𝑚𝑎𝑥]  with fixed 𝑁𝑚𝑎𝑥 =1999. 

Then we change incrementally the value of 𝑁𝑚𝑖𝑛 to 

get the set of estimates µ(𝑁𝑚𝑖𝑛)  and 𝛾(𝑁𝑚𝑖𝑛) , 

obtained by weighted linear fits of data {
1

𝑁
,

𝐶𝑁+1

𝐶𝑁
}, in 

the range [𝑁𝑚𝑖𝑛, 1999] . These estimates are 

presented in Figure 3 as functions of 𝑁𝑚𝑖𝑛, for both 

the square and the simple cubic lattice. From these 

data (obtained from one simulation session) the final 

results for 𝜇 ± Δ𝜇  and 𝛾 ± Δ𝛾  we obtain as an 

average of µ(𝑁𝑚𝑖𝑛) (as well as 𝛾(𝑁𝑚𝑖𝑛)) in a region 

where they appeared to be stable (see Figure 3). We 

repeat this analysis from data collected from 𝑛𝑆 

independent Monte Carlo sessions (𝑛𝑆 = 26 for the 

square lattice and 𝑛𝑆 = 22 for simple cubic lattice) 

obtaining 𝑛𝑆  results: µ(𝑖) ± Δµ(𝑖)  and 𝛾(𝑖) ± Δ𝛾(𝑖) , 
(𝑖 = 1, … , 𝑛𝑆), for µ and γ. The final numerical 

assessment of the connectivity constant µ and the 

entropic critical exponent γ is calculated as a 

weighted mean of µ(𝑖)  and 𝛾(𝑖) , respectively. The 

evaluated numerical values are given in Table 1.  

 

 

 

Figure 2. Values of the ratio CN+1/CN for SAWs on the square (d=2) and the simple cubic (d=3) lattice presented as a 

function of chain length N (left panels), and 1/N (right panels). Also, we have depicted the error bars related to CN+1/CN (on 

the left panels), while horizontal lines (on left panels) and arrows (on right panels) correspond to the extrapolated 

values in the limit 𝑁 → ∞. 
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Figure 3. Numerical results for the connectivity constant µ and the critical exponent γ as functions of 𝑁𝑚𝑖𝑛, obtained 

from weighted least squares linear fit of CN+1/CN against 1/N. The upper panels correspond to the square lattice (d=2), 

and the lower to the simple cubic lattice (d=3). The pairs of vertical dotted lines denote the range of 𝑁𝑚𝑖𝑛where 

analysed data are stable, whereas full horizontal lines represent the average values of data covered by corresponding 

intervals. 

 
Table 1. Values of the connectivity constant μ and critical 

exponents γ and ν, obtained via PERM Monte Carlo 

simulation method for the square (d=2) and the simple 

cubic (d=3) lattice. The figures in the brackets are single 

standard errors connected with the last two digits of the 

main results. 

 μ γ ν 

d=2 2.6381586(14) 1.3433(05) 0.74999(02) 

d=3 4.6840399(09) 1.1578(02) 0.58785(07) 

 

First, we discuss results for the square lattice. 

Our Monte Carlo result for the critical exponent 

γ=1.3433(05) is very close to the exact value 

43/32=1.34375 proposed by Nienhuis [14], and 

deviates from it 0.034%. The result for the 

connectivity constant µ=2.6381586(14) is more 

precise then the value µ=2.63818(3) obtained 

previously using the same PERM method [15]. Also, 

our finding for μ agrees very well with high precision 

estimates 2.63815853035(2) [16] and 

2.63815853032790(3) [17] obtained recently 

utilising very efficient transfer matrix methods. On 

the simple cubic lattice, our result for entropic critical 

exponent γ=1.1578(02) is consistent with numerical 

ones obtained by Monte Carlo simulations 

γ=1.1573(02) [18], exact enumeration method 

γ=1.15698(34) [5] and conformal field theory 

γ=1.1588(26) [19]. Finally, our estimate for the 

connectivity constant μ=4.6840399(09) is more 

precise then existing exact enumeration result 

μ=4.6840401(50) [5] and Monte Carlo estimate 

μ=4.6840386(11) [20]. 

Next, we study the critical exponent ν. The 

scaling relation (3) is valid in the asymptotic region 

of very long SAWs (𝑁 → ∞). For SAWs of finite 

length N, we must consider the correction terms, so 

that we use the scaling equation 

⟨𝑅𝑁
2 ⟩ = 𝐴𝑅𝑁2𝜈 (1 + ∑

𝑟𝑖

𝑁𝑖
∞
𝑖=1 + ∑

𝑟𝑖
′

𝑁Δ+𝑖
∞
𝑖=0 ),         (10) 

which is analogous to (8), with the same values for 

the exponent Δ describing non-analytical correction 

terms (for the square lattice Δ = 3/2  and for the 

simple cubic lattice Δ = 0.528(12)). To estimate ν 

from obtained Monte Carlo data of ⟨𝑅𝑁
2 ⟩, we define a 

set of effective critical exponents [21] with the 

formula 
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𝜈𝑁 =
1

2
log2

⟨𝑅𝑁
2 ⟩

⟨𝑅𝑁/2
2 ⟩

 ,                                               (11) 

which are calculated up to 𝑁𝑚𝑎𝑥 = 2000, with step 2 

for N, for both d=2 and d=3. To analyse the behaviour 

of 𝜈𝑁 for large N we insert (10) in (11). For the square 

lattice (d=2) we obtain 

𝜈𝑁 = 𝜈 −
𝑟1

ln 4

1

𝑁
 ,                                                    (12) 

whereas for the simple cubic lattice (d=3) it follows  

𝜈𝑁 = 𝜈 −
0.44 𝑟0

′

ln 4

1

𝑁0.528 .                                       (13) 

From (12) we may perceive that in two dimensions 

𝜈𝑁 should behave as a linear function of 1/N, while 

from (13) we see that in three dimensions 𝜈𝑁 should 

behave as a linear function of 1/𝑁0.528. The expected 

behaviour of 𝜈𝑁  against 1/𝑁  ( 1/𝑁0.528 ) for the 

square (simple cubic lattice) is depicted on the left 

panels of Figure 4. From 𝑑 = 2 graph one can see 

that in two dimensions 𝜈𝑁  monotonically increases 

with N and approaches the limiting value 𝜈 =
lim

𝑁→∞
𝜈𝑁  from below, which implies that 𝑟1 > 0  in 

equation (12). On the other hand, in three dimensions 

(𝑑 = 3) one may observe that 𝜈𝑁 decreases with 𝑁, 

which in (13) brings about 𝑟1
′ < 0.  

 

 
Figure 4. On the left panels we have presented Monte Carlo results for the effective critical exponent 𝜈𝑁 for SAWs on 

the square (d=2) and simple cubic (d=3) lattice as function of 1/𝑁 (for d=2) and  1/𝑁0.528 (for d=3). On right panels 

we presented estimates of the critical exponent ν (together with their error bars) as functions of 𝑁𝑚𝑖𝑛, obtained from 

weighted least squares linear fit of {1/𝑁, 𝜈𝑁} for d=2 and {1/𝑁0.528, 𝜈𝑁} for d=3, in the range [𝑁𝑚𝑖𝑛 , 2000]. The 

pairs of vertical dotted lines denote the range of 𝑁𝑚𝑖𝑛 where estimates of 𝜈(𝑁𝑚𝑖𝑛) emerge to be stable. The arrows (on 

left panels) as well as full horizontal lines (on right panels) designate extrapolated values of 𝜈𝑁  for 𝑁 → ∞. 

 

 

The limiting values 𝜈 = lim
𝑁→∞

𝜈𝑁  for both 

dimensions (𝑑 = 2 and 3) are determined applying 

the weighted linear fit of data presented on the left 

panels of Figure 4. To accomplish this task, we follow 

the procedure applied in the case of μ (for details see 

caption of Figure 4) and our definitive estimates for ν 

are listed in Table 1. For 𝑑 = 2 we can compare our 

Monte Carlo estimate with the exact result 3/4 [14]. 

One can see that our finding ν=0.74999(02) is quite 

close to 3/4 (with relative error 0.001%), and it is 

more accurate than ν=0.7489(21) [22] recently 

obtained by Monte Carlo method that used non-

reversed random walk algorithm to generate SAWs. 



Ivan Živić, Monte Carlo simulations of a polymer chain model on euclidead lattices  

Contemporary Materials, X‒2 (2019)                                                                                                          Page 173 of 174 

 

On the other hand, for  
𝑑 = 3  our finding ν=0.58785(07) coincides with 

numerical ones obtained by Monte Carlo methods 

ν=0.58765(20) [18], ν=0.587597(7) [13], 

ν=0.5876(14) [22], exact enumeration method 

ν=0.58772(17) [5] and conformal field theory 

ν=0.5877(12) [19]. 

Overall, we may infer that the applied PERM 

Monte Carlo algorithm came out to be very efficient 

method for sampling long polymer chains in order to 

learn numerical values of quantities describing 

critical properties of linear polymers. Especially, our 

numerical findings for the connectivity constant μ and 

the critical exponents γ and ν, studied on Euclidean 

lattices, appeared to be very accurate and consistent 

with the results obtained by other methods utilised in 

studies of polymer statistics. 

 

 

4. CONCLUSION 

 

We have applied the PERM Monte Carlo chain 

growth algorithm to simulate polymer chains, 

modelled by self-avoiding random walks (SAWs), in 

two and three dimensions. Particularly, on the square 

and the simple cubic lattice, for SAWs of the maximal 

length of 2000, we have enumerated approximately 

the number of different SAW configurations and we 

have studied the behaviour of effective critical 

exponents 𝜈𝑁  for the end-to-end distance of a 

polymer chain of finite length N. We have found out 

that on the square lattice 𝜈𝑁 monotonically increases, 

whereas on the simple cubic lattice it monotonically 

decreases with N. Also, we analysed the asymptotic 

region of large chains (𝑁 → ∞), for which we have 

evaluated the values of critical exponents ν and γ that 

govern the mean squared end-to-end distances of 

polymer chains and total number of different SAW 

configuration, respectively, as well as the connectivity 

constant μ (representing the effective coordination 

number of the SAW, for very long chains). Our results 

(given in Table 1) are consistent with the results 

previously obtained with other methods. The 

performed study has been made for a limited length 

of polymer chains (up to 2000 steps) and we believe 

that our result may be additionally improved 

simulating SAWs of larger length.  
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МОНТЕ КАРЛО СИМУЛАЦИЈЕ МОДЕЛА ПОЛИМЕРНОГ  

ЛАНЦА НА ЕУКЛИДСКИМ РЕШЕТКАМА 

 

Сажетак: Проучаване су критичне особине флексибилних полимера, 

моделованих самонепресецајућим случајним шетњама, у добрим растварачима и 

хомогеним срединама. Примењујући PERM Монте Карло метод, симулирани су 

полимерни ланци на квадратној и простој кубичној решетки, максималне дужине  

N = 2000 корака. Апроксимативном методом пребројаван је укупан број полимерних 

конфигурација дужине N, и анализирано је његово асимптотско понашање (за велико 

N), одређено константом повезаности μ и ентропијским критичним експонентом γ. 

Такође је проучавано понашање скупа ефективних критичних експонената 𝜈𝑁 , који 

одређују растојање између крајева полимерног ланца дужине N. Установљено је да у 

дводимензионом случају 𝜈𝑁  монотоно расте са порастом N, док у три демензије 𝜈𝑁 

монотоно опада када N расте. За обе димензије вредности за 𝜈𝑁 екстраполиране су за 

област ланаца јако великих дужина. Добијени резултати су дискутовани и поређени са 

раније добијеним резултатима за полимере на еуклидским решеткама. 

Кључне речи: полимери, Монте Карло симулације, модели на решеткама, 

критични експоненти. 
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