XIV INTERNATIONAL SCIENTIFIC CONFERENCE CONTEMPORARY MATERIALS 2021

Banja Luka, September 10, 2021

ACADEMY OF SCIENCES AND ARTS OF THE REPUBLIC OF SRPSKA

Министарство науке и технологије

REDUCING CLIMATE CHANGE BY INSTALLING A NEW PHOTOVOLTAIC POWER PLANT IN BULGARIA

Plamen Tsankov

Vice Rector in charge of Research and Development

Technical University of Gabrovo, Bulgaria Faculty of Electrical Engineering and Electronics

CONTENTS

- 1. INTRODUCTION
- 2. DESIGN AND TECHNICAL DATA FOR THE PHOTOVOLTAIC POWER PLANTS CONSTRUCTED
- 3. INITIAL DATA FROM SOFTWARE FOR MONITORING OF METEOROLOGICAL AND ELECTRICAL OPERATING PARAMETERS
- 4. ASSESSMENT OF THE ECOLOGICAL EQUIVALENT OF THE SAVED ENERGY IN BULGARIA
- 5. CONCLUSIONS

1. INTRODUCTION

A three new roof-mounted grid-connected photovoltaic (PV) power plants have been constructed in the Technology Park at the Technical University of Gabrovo, Bulgaria, as part of a Project BG05M2OP001-1.002-0023 Competence Center "Intelligent Mechatronic, Eco and Energy Saving Systems and Technologies" (https://smeest.eu), funded by an Operational Programme Science and Education for Smart Growth, co-financed by the European Union through the European Structural and Investment Funds.

The photovoltaic power plants are part of the equipment of the new laboratory section "Ecological, energy saving and electromagnetically compatible lighting, LED and RES components and technologies", in which scientists and specialists of one of the largest centers for research of photovoltaic systems in Bulgaria - Technical University -Gabrovo are engaged.

Technology Park at the Technical University of Gabrovo, Bulgaria

1. INTRODUCTION

Three different types of technology of the PV modules have been used: mono-crystalline silicon (mono-Si), cadmium telluride (CdTe) and copper indium gallium selenide (CIGS). With the new three power plants, together with the existing photovoltaic power plants in TU-Gabrovo with modules of amorphous silicon and poly-crystalline silicon, **5 different photovoltaic materials can be tested simultaneously**. A small 500 Wp mono-Si photovoltaic thermal hybrid solar collectors (PVT) PV system is also constructed.

The power plants are equipped with a system for monitoring the meteorological and electrical operating parameters, which measures, displays and stores data on solar radiation, temperature, wind speed, currents, voltages, and electrical power of each power plant.

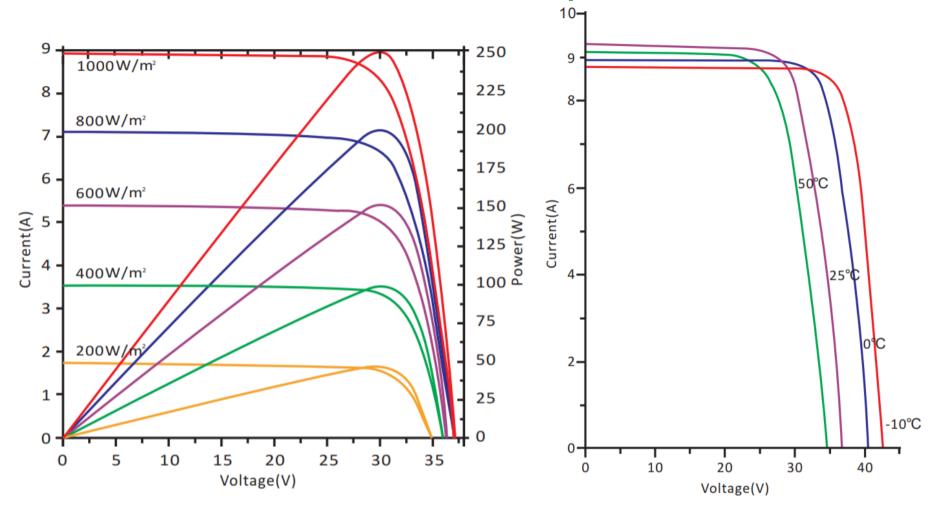
Three different types technology of the PV modules

- Monocrystalline silicon (mono-Si) 44 pieces PV modules, 10 kWp
- Cadmium telluride (CdTe) 96 pieces PV modules, 9.6 kWp
- Copper indium gallium selenide (CIGS) 90 pieces PV modules, 9.9 kWp

Disposition of the three PV power plants on the roof of the Competence Center building at The Technology center of Technical University of Gabrovo

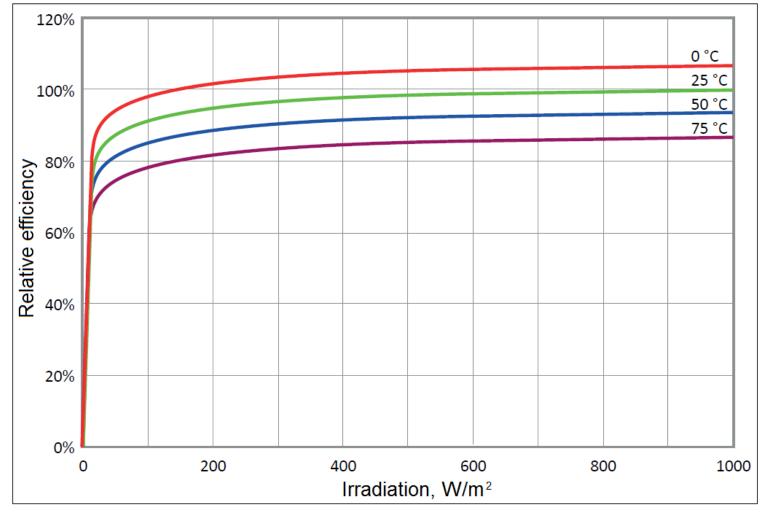
Technical data at standard test conditions (STC) of the three different types technology of the PV modules

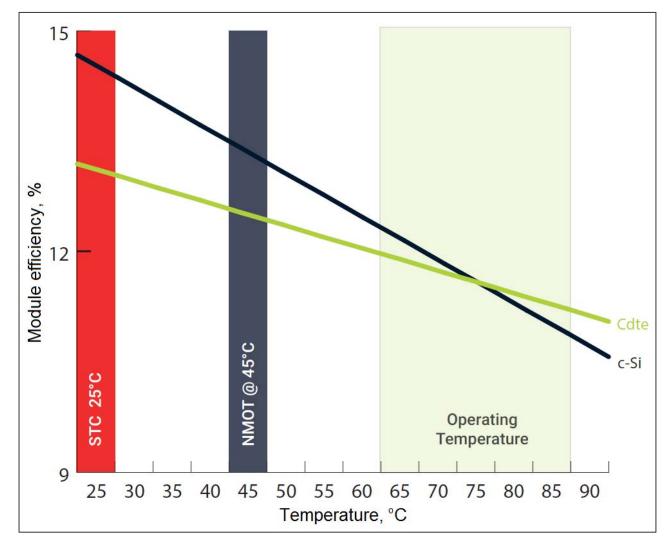
Parameters at STC*	m-Si by Risen, model SYP250M	CdTe by Calyxo, model CX4 100/3	CIGS by Hulket, model 1100E1
Nominal power, [Wp]	250.00	100.00	110.00
Voltage at maximum power, [V]	30.40	72.60	56.90
Current at maximum power, [A]	8.25	1.38	1.93
Open circuit voltage, [V]	37.50	72.60	73.40
Short circuit current, [A]	8.59	1.53	2.10
Maximum system voltage, [Vdc]	1000	1000	1000


*Standard test conditions:

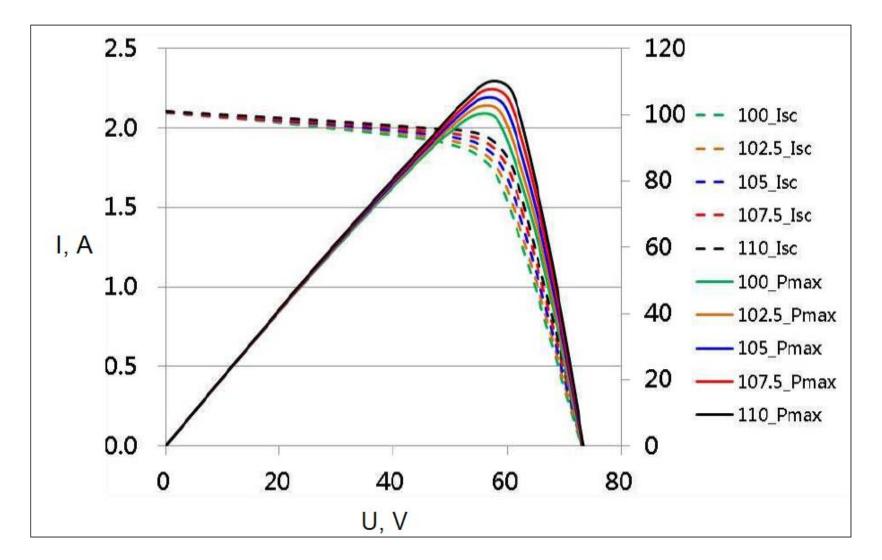
- Solar irradiance: 1000 W/m²
- Mass of the air: AM 1.5
- Temperature of the PV cell: Tc = 25 °C

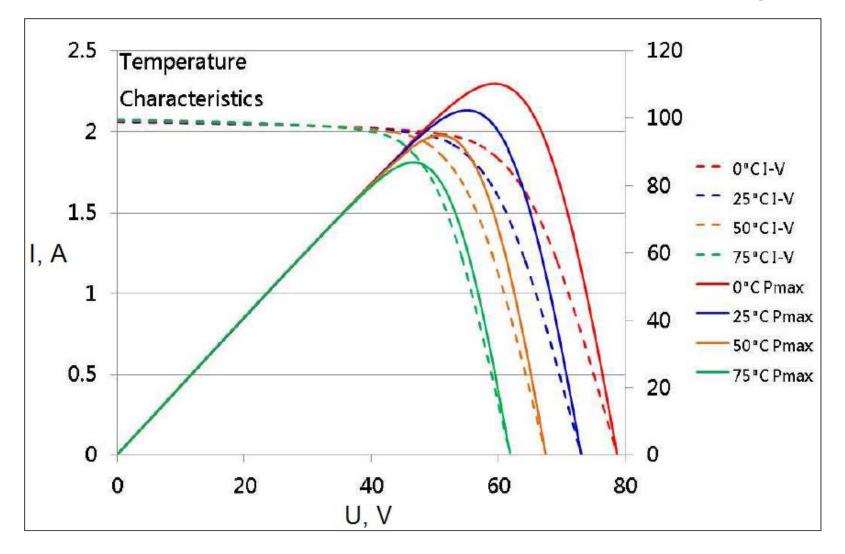
mono-Si PV modules power plant

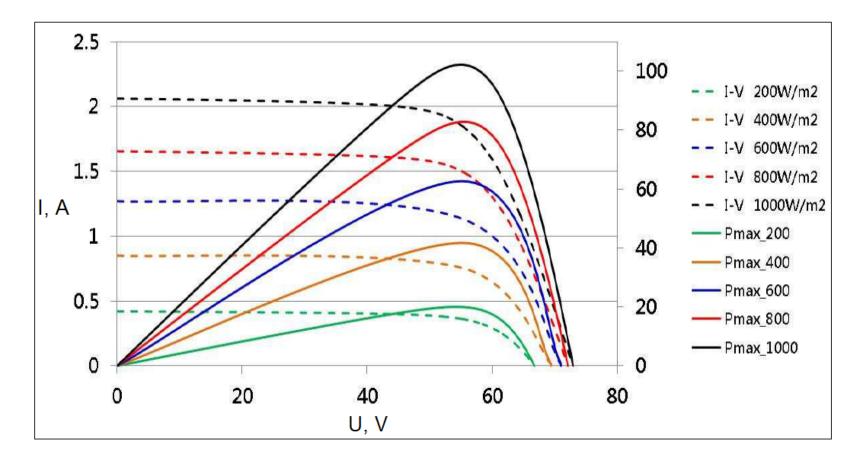

I-V and P-V curves of the mono-Si PV module at different irradiation ans cell temperatures


CdTe PV modules power plant

Performance at different solar irradiation of the CdTe PV module 100 Wp


Comparative efficiency at different temperature of the PV cell between CdTe and crystalline silicon material


CIGS PV modules power plant


I-V and P-V curves of the CIGS PV module at STC

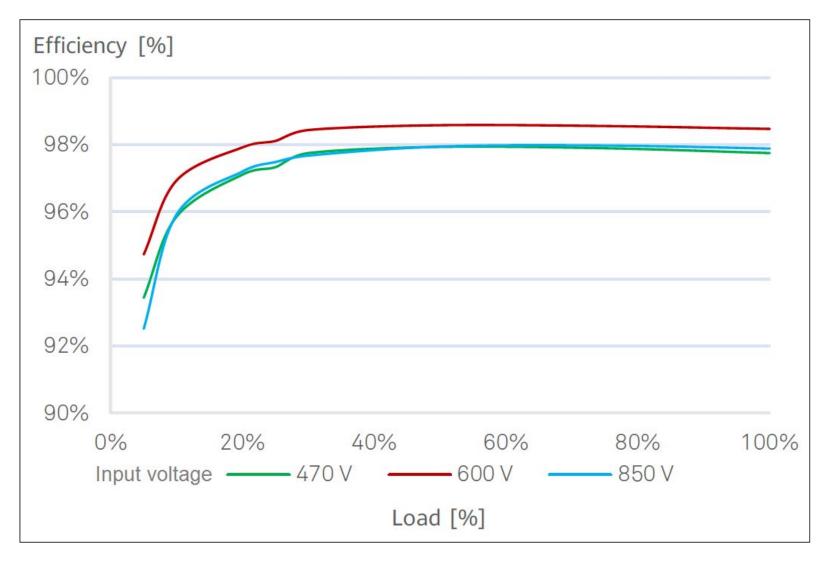
I-V and P-V curves of the CIGS PV module at various temperature

I-V and P-V curves of the CIGS PV module at various irradiance

2. THREE-PHASE SINE-WAVE INVERTERS AND SMART LOGGER

Huawei SUN2000-10KTL-M0

Smart logger Solar Log 300


2. TECHNICAL CHARACTERISTICS OF THE THREE-PHASE SINE-WAVE INVERTERS

Inverters Huawei, model SUN2000-10KTL-M0

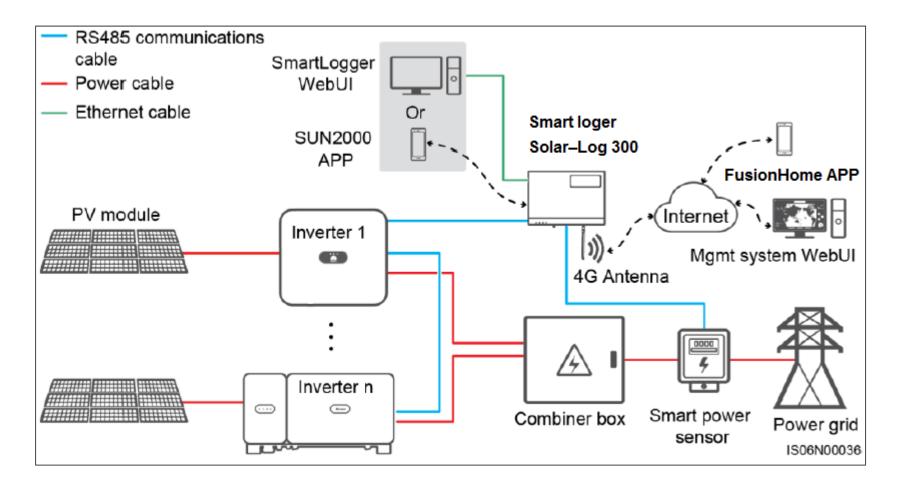
Input		Output	
Maximum PV power	14 880 Wp	Grid connection	3 phase
Maximum voltage	1 100 Vdc	Rated output power	10 kW
Operating voltage range	(140 ÷ 980) V	Maximum apparent power	11 kVA
Start-up voltage	200 V	Rated output voltage	230/400 Vac
Full power MPPT voltage range	(470 ÷ 850) V	Rated AC grid frequency	50 Hz
Rated input voltage	600 V	Maximum output current	16.9 A
Maximum input current / MPPT	11 A	Adjustable power factor	0.8 ind ÷ 0.8 cap
Maximum short-circuit current	15 A	Maximum total harmonic distortion (THD)	≤ 3 %
Number of MPP trackers	2	Maximum efficiency	98.6 %
Maximum number of inputs	2		

2. TECHNICAL CHARACTERISTICS OF THE THREE-PHASE SINE-WAVE INVERTERS

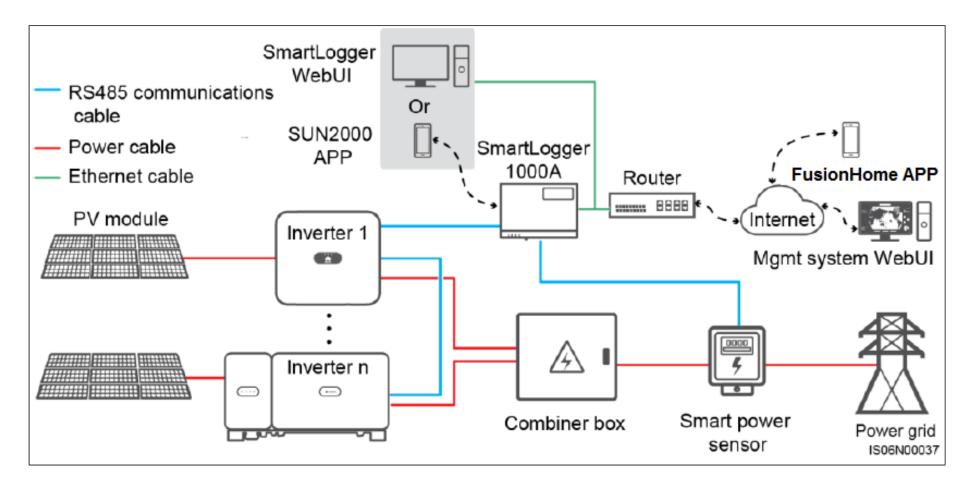
Efficiency curves of the inverter SUN2000-10KTL-M0

2. ADDITIONAL LABORATORY MEASURING EQUIPMENT

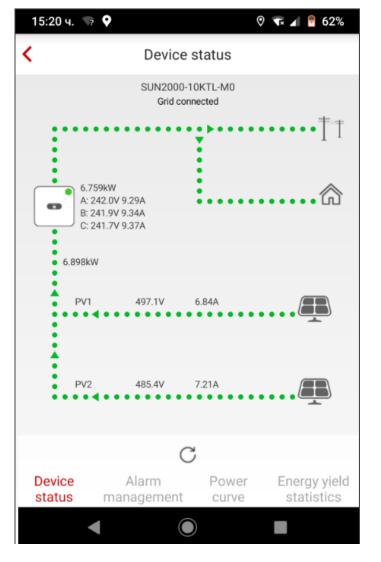
I-V curve meter DC voltage up to 1500 V


Power quality analyzer class A

Thermal inspection infrared camera

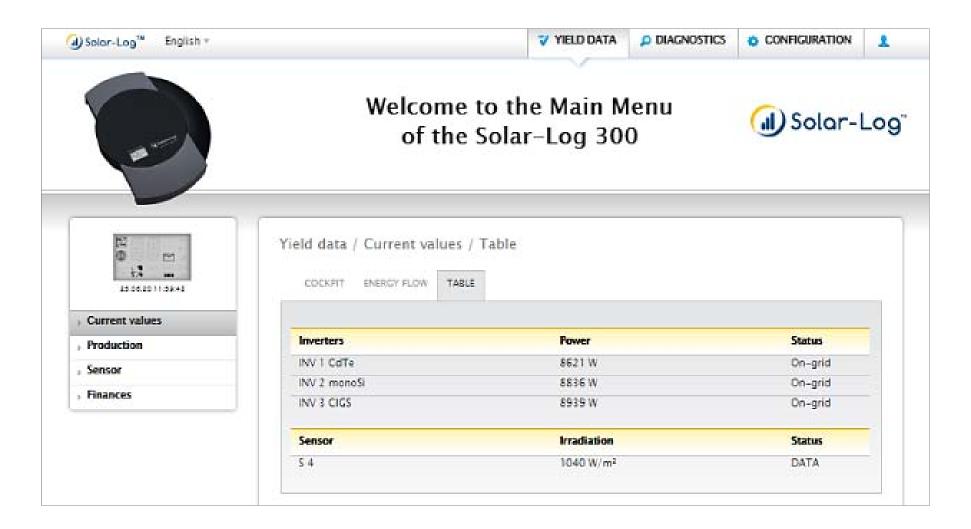

2. TECHNICAL CHARACTERISTICS OF THE THREE-PHASE SINE-WAVE INVERTERS

Communications with the Inverters and Smart logger Access over a Public Network



2. TECHNICAL CHARACTERISTICS OF THE THREE-PHASE SINE-WAVE INVERTERS

Communications with inverters SUN2000-10KTL-M0 Access over a Local Ethernet and WiFi

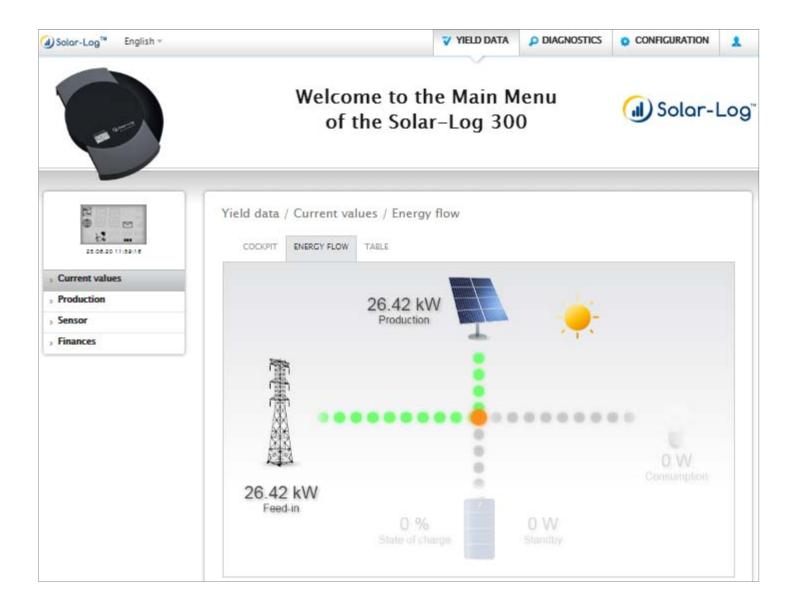


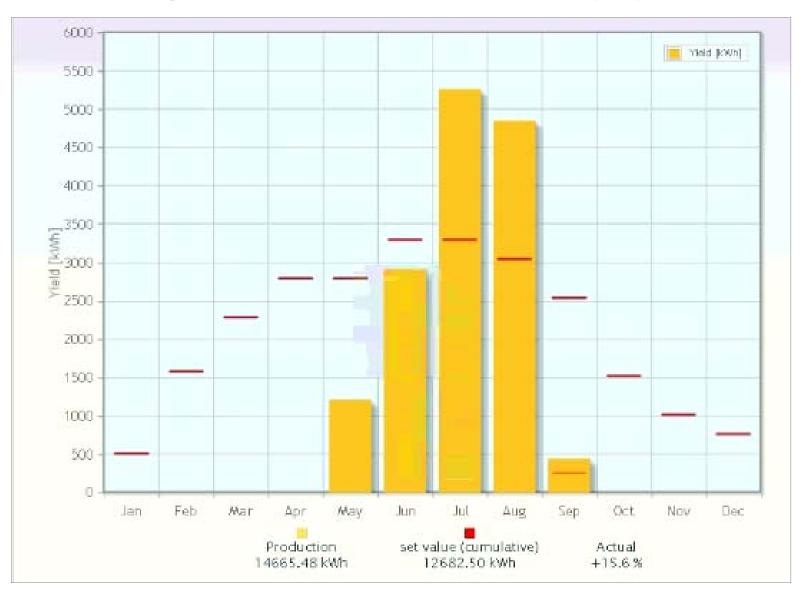
Direct communications with inverters SUN2000-10KTL-M0 over WiFi with FusionHome App

15:18 ч. ♥ ♥ ▼ ▲ ● 62% K Energy yield statistics					
Day	Month	Year	History		
юни-2020 🛗					
Energy yield(kWh))				
70.00 60.00 50.00 30.00 20.00 10.00 0.00 0 3 6	9 12	15 18 21	24 27 30 Day		
Tin	ne	Energy y	rield(kWh)		
28-юн	и-2020	64	.36		
29-юн	и-2020	62	.12		
30-юн	и-2020	63	.35		
Device status r	Alarm management	Power curve	Energy yield statistics		
•					

Solar-Log 300 – instantaneous values of AC power of the inverters of the three PV systems

3. INITIAL DATA FROM SOFTWARE FOR MONITORING OF METEOROLOGICAL AND ELECTRICAL PARAMETERS Solar-Log 300 – Inverter details of the mono-Si PV modules


3. INITIAL DATA FROM SOFTWARE FOR MONITORING OF METEOROLOGICAL AND ELECTRICAL PARAMETERS Solar-Log 300 – Inverter details of the CdTe PV modules

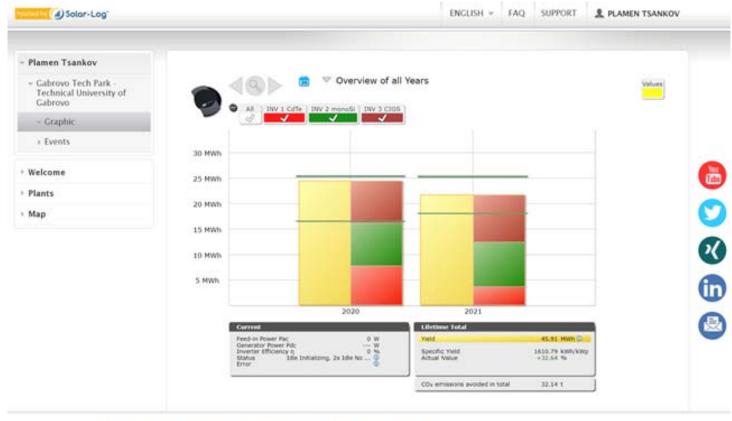

3. INITIAL DATA FROM SOFTWARE FOR MONITORING OF METEOROLOGICAL AND ELECTRICAL PARAMETERS Solar-Log 300 – Inverter details of the CIGS PV modules


3. INITIAL DATA FROM SOFTWARE FOR MONITORING OF METEOROLOGICAL AND ELECTRICAL PARAMETERS Solar-Log 300 – Monitoring of the energy flow

Solar-Log 300 – Production of electricity by months

Production of electricity in July 2020

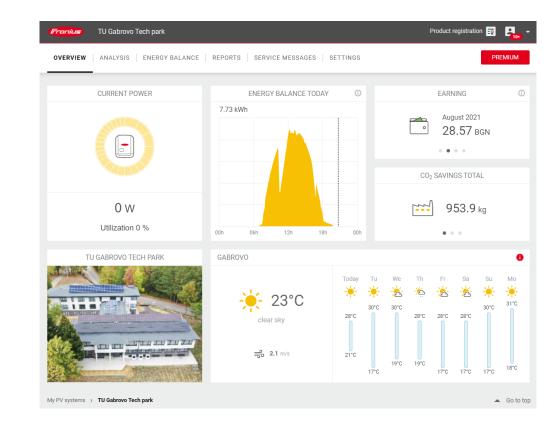
All the monitored data is stored at every 5 minutes and can be exported as CSV file for additional more in-depth software analysis


AutoSave Off 🖫 🍤 ∽ 🖓 ∽ 🤿	export_min.xlsx 👻	♀ Search	:h			Plamen Tsankov 🛛 🤤	፳ – ♂ ×
File Home Insert Page Layout Formulas	Data Review View H	lelp Acrobat					🖻 Share 🛛 🖓 Comments
$\begin{array}{c c} & & & \\ & & & \\ & & \\ Paste \end{array} \begin{array}{c} & & \\ & & \\ & & \\ \hline \\ Paste \end{array} \begin{array}{c} Calibri \\ & & \\ \hline \\ & \\ & \\ \hline \\ & \\ & \\ \hline \\ & \\ &$			General ✓	_	Cell Insert Delete Format	∑ AutoSum ~ Ary ↓ Fill ~ Sort & Find &	Ideas Sensitivity
· ✓ Format Painter		Merge & Center *		Formatting Y Table Y S	tyles * * * *	♦ Clear × Filter × Select ×	~
Clipboard 🛛 Font	Alignme Alignme	ent 🗔	Number 🗔	Styles	Cells	Editing	Ideas Sensitivity 🔨
C2 \checkmark $\stackrel{\cdot}{\rightarrow}$ $\stackrel{\cdot}{\rightarrow}$ $\stackrel{\cdot}{\checkmark}$ f_x 1							*
A B C D E F	G H I	J K	L M N	O P	Q R S	T U V	W X Y
1 #Date Time INV Pac [W] DaySum [V Status	Error Pdc1 [W] Pdc2 [W] U	dc1 [V] Udc2 [V] Tem	np [°C] Idc1 [mA] Idc2 [r	mA] Uac1 [V] Uac2 [V]	Uac3 [V] INV Pac [W]	DaySum [V Status Error	Pdc1 [W] Pdc2 [W] Udc1
2 5.6.2020 17:25:00 1 2552 50820 5	0 1265 1364	546 543	39 2316 2	2511 244 247	7 244 2 143	6 27740 5 () 1494 5
3 5.6.2020 17:20:00 1 2547 50610 5	0 1262 1363	545 540	39 2311 2	244 247	7 244 2 143	4 27620 5 0	0 1491 6
4 5.6.2020 17:15:00 1 3137 50400 5	0 1559 1664	550 547	39 2833 3	243 246	6 244 2 175	5 27510 5 (1815 5
5 5.6.2020 17:10:00 1 1874 50150 5	0 925 1015	538 532	39 1720 1	.907 243 246	6 244 2 107	['] 1 27370 5 0	0 1122 5
6 5.6.2020 17:05:00 1 1815 49990 5	0 895 984	536 529	40 1668 1	.860 243 246	6 244 2 103	3 27270 5 (0 1082 5
7 5.6.2020 17:00:00 1 3029 49870 5	0 1505 1609	545 540	40 2757 2	243 246	6 244 2 167	['] 1 27210 5 (0 1734 5
8 5.6.2020 16:55:00 1 3991 49580 5	0 1990 2106	549 546	40 3622 3	243 246	6 243 2 219	2 27040 5 0	2262 5
9 5.6.2020 16:50:00 1 2429 49250 5	0 1205 1302	546 539	40 2203 2	416 242 245	5 243 2 137	⁷⁸ 26860 5 0	0 1434 5
10 5.6.2020 16:45:00 1 2304 49050 5	0 1141 1239	539 535	40 2117 2	242 245	5 243 2 130	2 26750 5 (1356 5
11 5.6.2020 16:40:00 1 2343 48860 5	0 1161 1259	538 535	41 2157 2	242 245	5 242 2 131	.3 26640 5 0	1368 5
12 5.6.2020 16:35:00 1 3412 48660 5	0 1698 1809	545 543	41 3110 3	331 242 245	5 242 2 188	33 26530 5 0	0 1949 5
13 5.6.2020 16:30:00 1 3137 48380 5	0 1558 1666	541 540	42 2878 3	241 245	5 242 2 175	3 26380 5 C	
14 5.6.2020 16:25:00 1 2960 48120 5	0 1468 1577	535 532	42 2742 2	960 241 245	5 242 2 163	6 26230 5 0	0 1699 5
15 5.6.2020 16:20:00 1 4492 47890 5	0 2241 2369	538 542	43 4161 4	368 242 245	5 242 2 243	2 26110 5 0	
16 5.6.2020 16:15:00 1 5304 47520 5	0 2644 2789	541 540	43 4887 5	242 245	5 243 2 285	i0 25900 5 C	0 2942 5
17 5.6.2020 16:10:00 1 5500 47240 5	0 2741 2892	548 544	42 5001 5	315 241 245	5 242 2 300	01 25750 5 0	3090 5
18 5.6.2020 16:05:00 1 3479 46580 5	0 1728 1846	541 539	43 3190 3	416 241 244			
19 5.6.2020 16:00:00 1 5152 46330 5	0 2569 2712	542 544		982 242 245			
20 5.6.2020 15:55:00 1 5177 45850 5	0 2583 2724	542 536		io72 241 245			
21 5.6.2020 15:50:00 1 5184 45470 5	0 2585 2727	535 534		241 245			, 2501 0
22 5.6.2020 15:45:00 1 6131 44990 5	0 3056 3213	540 539		i955 242 245			
23 5.6.2020 15:40:00 1 6987 44470 5	0 3482 3654	540 544		5717 242 245			
24 5.6.2020 15:35:00 1 5549 43890 5	0 2767 2915	539 543		360 241 245			
25 5.6.2020 15:30:00 1 5753 43410 5	0 2862 3022	536 542		571 241 245			
26 5.6.2020 15:25:00 1 7477 42930 5	0 3723 3911	543 545		242 245			
27 5.6.2020 15:20:00 1 6951 42320 5	0 3462 3634	548 548		630 242 246			
28 5.6.2020 15:15:00 1 5937 41750 5	0 2956 3114	545 552		637 242 246			, 331, 0
29 5.6.2020 15:10:00 1 4889 41240 5	0 2433 2578	547 548	41 4444 4	697 242 245	5 242 2 268	30 22530 5 () 2762 6 🗸
export_min Sheet1 +							+ 100%

In Bulgaria, a mandatory state "Ordinance № E-RD-04-3 from 4.05.2016 on eligible measures for the implementation of energy savings in final consumption, ways of demonstrating the energy savings achieved, the requirements for their assessment methodologies and ways of confirmation "applies. A Specialized Commission on Electricity at the National Agency for Sustainable Energy Development, with the participation of the author of this publication, has developed a Methodology for estimating energy savings when installing photovoltaic systems, according to the Ordinance.

Reference values of the conversion factor considering the losses for extraction / production and transmission of energy, including fuels, and Reference values of the coefficient of ecological equivalent of energy

Type of energy resource / energy	Conversion factor from FES to PES, considering energy losses	Ecological equivalent coefficient
	e _p	f _i
	[-]	[gCO ₂ /kWh]
Industrial gas oil, diesel	1.10	267
Fuel oil	1.10	279
Natural gas	1.10	202
Propane-butane	1.10	227
Black coal	1.20	341
Lignite / brown coal	1.20	364
Anthracite coal	1.20	354
Coal briquettes	1.25	351
Firewood, pellets	1.05	43
Heat from district heating	1.30	290
Electrical energy	3.00	819


The analysis of the initial data from the monitoring systems of the new photovoltaic power plants in the Technology Park of the Technical University - Gabrovo, allows calculation of the necessary parameters for assessment of their impact on reducing carbon emissions and climate change. Web-view of the software for monitoring the 30 kWp (mono-Si, CdTe and CIGS) grid-connected power plants showing CO2 emissions avoided for the period from the launch of the power plant in May 2020 to July 2021, which are a total of 32.14 tons.

© 2021 Solar-Log GmbH Privacy Policy | GTC | Right of revocation for end systemers | Price List | Imprint | Licenses

The Android (left) and Web-based (right) software for monitoring the small hybrid PVT system (Fig. 2) are configured also to directly calculate the environmental benefits of its operation. The figures show an exemplary screenshots indicating the saved kilograms of CO2 emissions from the beginning of the system operation, as well as the corresponding number of saved trees or gained kilometers of movement of an airplane or a car with an internal combustion engine. The saved CO2 emissions for the period from the launch of the power plant in May 2020 to July 2021 are about 950 kilograms.

0:11 🞯		ltır. &	奈 🗩 88 v
📶 Τυ (Gabrovo ⁻	Tech park	鐐
Earnings	(i)		
Today			0.00
August		В	GN 24.96
2021		BG	N 232.54
Total		BG	N 428.34
CO ₂ Savir	ngs total		
1			945.91 Kilogram
A A			24 Kilometres
			24 Trees
			3,796 Kilometres
∩ Current	.ili History	Earnings	ع Profile

5. CONCLUSIONS

With the construction of the new three mono-Si, CdTe and CIGS power plants presented, together with the existing photovoltaic power plants with modules of a-Si and p-Si, 5 different photovoltaic materials can be tested simultaneously in the new laboratory at the Technology park of the Technical University of Gabrovo. The initial measured and stored comparative data from software for monitoring of meteorological and electrical operating parameters - solar radiation, temperature, wind speed, currents, voltages, and electrical power of each power plant, confirm the operability and functionality for future research of the new photovoltaic power plants constructed. Their modern systems for monitoring allow for a detailed analysis of the produced electricity and assessment of the impact on climate change of a similar type of widespread in Bulgaria roof-mounted PV power plants.

5. CONCLUSIONS

The carbon savings achieved by the small rooftop photovoltaic power plants in the present study are relatively small for major impacts on climate change but are useful with the ability to assess the savings potential of different photovoltaic module technologies. The considered technical solutions for roof PV power plants with a power of up to 30 kWp and their results are significant for the current stage of development of photovoltaic electricity in Bulgaria, as only for such power plants there is still FiT. A study in the register of newly built photovoltaic power plants in Bulgaria shows that in 2020, 759 new plants were built, of which 727, or 96% have a capacity of up to 30 kWp.

5. CONCLUSIONS

The technical solutions developed in this study and the results obtained can be useful for the correct choice of technology of photovoltaic modules and other elements of photovoltaic power plants, as well as for assessing their impact on climate change in Bulgaria and other countries or regions with similar weather conditions and profiles of energy sources in their electricity systems.

ACKNOWLEDGEMENT

This work was supported by the European Regional Development Fund within the OP "Science and Education for Smart Growth 2014 - 2020", Project CoC "Smart Mechatronic, Eco- And Energy Saving Systems And Technologies", № BG05M2OP001-1.002-0023.

XIV INTERNATIONAL SCIENTIFIC CONFERENCE

CONTEMPORARY MATERIALS 2021

September 10, 2021 Banja Luka

ACADEMY OF SCIENCES AND ARTS OF THE REPUBLIC OF SRPSKA

Министарство науке и технологије

THANK YOU FOR YOUR ATTENTION !

REDUCING CLIMATE CHANGE BY INSTALLING A NEW PHOTOVOLTAIC POWER PLANT IN BULGARIA

Plamen Tsankov

Vice Rector in charge of Research and Development

Technical University of Gabrovo, Bulgaria Faculty of Electrical Engineering and Electronics