Review of Coating Processes in Order to Improve the Performance of Hydraulic Pumps Milutin M. Živković¹, Milan M. Milosavljević², Predrag V. Dašić³ ^{1,3} Academy of Professional Studies Šumadija (APSŠ) – Department in Trstenik, 37240 Trstenik (Serbia) ¹ E-mail: <u>milutinzivkovicts@gmail.com</u> ² University of Pristina with temporary headquarters in Kosovska Mitrovica, Faculty of Technical Sciences, Kosovska Mitrovica (Serbia) ³ E-mail: dasicp58@gmail.com **Abstract:** Coating processes are used to apply a very thin layer of material (coating) of a certain thickness to the base material, which changes its dimensions and characteristics. They significantly improve the physical, chemical, mechanical, electrical and tribological characteristics of parts and complete systems, and can also serve as protection (eg against corrosion). The reliability and efficiency of devices exposed to this treatment, and thus complete systems, produces their service life, reduces energy loss, expressed by reduced friction, reduced maintenance costs, and thus overall downtime. Coating processes may be classified as follows: Vapor deposition (chemical vapor deposition – CVD and physical vapor deposition – PVD), Chemical and electrochemical techniques, Spraying, Roll-to-roll coating processes, Physical coating processes and etc. The paper gives an overview of the coating processes both in terms of the application process and the achieved hardness and depth of the applied layer. Recommendations for the choice of treatment methods, the quality of the treated surfaces as a comparative analysis of the costs of thermochemical treatment on the example of the basic parts of hydraulic pumps are also given. **Keywords:** Coating processes, chemical vapor deposition (CVD), physical vapor deposition (PVD), electrochemical processes (ECP), spraying. Figure 2: Typical ranges for (a) thickness of coatings, and (b) processing temperature for some surface technologies [1]. II: Ion implantation Figure 4: Interaction of wear mechanisms [1] Figure 5: Parameters of a coating system influencing the tribological performance [1,3,4,5] Figure 6: General coating pre – selection process [4,5] | | rabie 1: C | ompara | uve chai | acteristi | cs or some | or the r | паш соа | mg me | mous [| τJ | |------------------------------------|--|--------------------------|---|---|------------------------------------|--|--|------------------|---|------------------| | | Gaseous state processes | | | | Solution processes | | Molten or semi-molten state
processes | | | | | | PVD | PAPVD | CVD | PACVD | Ion
implantation | Sol-gel | Electro-
plating | Laser | Thermal spraying | Welding | | Deposition rate(kg/hr) | Up to 0.5 | Up to 0.2 | Up to 1 | Up to 0.5 | | 0.1-0.5 | 0.1-0.5 | 0.1-1 | 0.1-10 | 3.0-5.0 | | Component
size | Limited by chamber size | | | Limited by solution bath | | May be limited by chamber size | | | | | | Substrate
material | Wide choice | Wide choice | Limited by
deposition
temperature | Some
restrictions | Some
restrictions | Wide
choice | Some
restrictions | Wide
choice | Wide
choice | Mostly steels | | Pre-
treatment | Mechanical/
chemical plus
ion
bombardment | plus ion | Mechanical/
chemical | Mechanical/
chemical
plus ion
bombardmen | chemical plus
ion
bombardmen | Grit blast
and/or
chemical
cleaning | chemical
cleaning and
etching | Mechanic | al and chen | nical cleaning | | Post-
treatment | None | None | Substrate
stress relief | None | None | High
temperature
calcine | None/thermal
treatment | | strate stress
lief | None | | Control of
deposit
thickness | Good | Good | Fair/good | Fair/good | Good | Fair/good | Fair/good | Fair/good | Manual-
variable
automated-
good | Poor | | Uniformity
of coating | Good | Good | Very good | Good | Line of sight | Fair/good | Fair/good | Fair | Variable | Variable | | Bonding
mechanism | Atomic | Atomic plus
diffusion | Atomic | Atomic plus
diffusion | Integral | Surfac | ce forces | Mechanica | al/chemical | Metallurgica | | Distortion
of substrate | Low | Low | Can be high | Low/
moderate | Low | Low | Low | Low/
moderate | Low/
moderate | Low/
moderate | Table 1. Comparative characteristics of some of the main coating methods [1] | Table 2: Some characteristics of deposition processes [1] | | | | | | | | |---|---|--|---|---------------------------------|--------------------------|------------------------|--| | | Evaporation | Ion plating | Sputtering | CVD | Electro-deposition | Thermal spraying | | | Mechanism of production
of deposition species | Thermal energy | Thermal energy | Momentum
transfer | Chemical reaction | Deposition from solution | From flames or plasmas | | | Deposition rate | Can be very high
(up to 750,000
Å/min) | Can be very high
(up to 250,000
Å/min) | Low except for
pure metals (e.g.
Cu-10,000 Å/min) | ure metals (e.g. Moderate (200- | | Very high | | | Deposition specie | Atoms to ions | Atoms to ions | Atoms to ions | Atoms | Ions | Droplets | | | Throwing powder for:
a. complex shaped object | Poor line-of- sight coverage distributions Good, but nonuniform thickness thickness distributions | | Good | No | | | | | b. into small blind holes | Poor | Poor | Poor | Limited | Limited | Very limited | | | Metal deposition | Yes | Yes | Yes | Yes | Yes, limited | Yes | | | Alloy deposition | Yes | Yes | Yes | Yes | Quite limited | Yes | | | Refractory compound deposition | Yes | Yes | Yes | Yes | Yes, limited | Yes | | | Energy of deposition species | Low | Can be high | Can be high | Can be high
with PACD | Can be high | Can be high | | | Bombardment of
substrate/deposit by
inert gas ions | Not normally | Yes | Yes or no
depending on
geometry | possible | No | Yes | | | Growth interface | Not normally | Yes | Yes | Yes | No | No | | Not normally Figure 3: Descriptive key words of wear and their interrelations [1,2] Fig. 7 Axial piston pump exploded view [6] T-3 Review of the material of manufacture and coating of contact surfaces | | TO THE HOLD THE MINISTER OF MANAGEMENT WAS OF COMMON SULFACES | | | | | | | |-----------|---|------------------------|------------------------------------|---|--|--|--| | Pump type | Klipne
pumpe | Vital part of the pump | Material of manufacture | Dressing procedure | | | | | | | Bareel | 42CrMo4 (Č4732) | Casting | | | | | | | Sliding pedals | CuZn ₄ 0Al ₂ | - | | | | | | | Pistons | 31CrMo12 (Č4738) | Hardening and cementation | | | | | | | Valve plate/ | 34CrAlMo5 (Č4739) | Gas nitriding (previously with improvement) | | | | | | | Swashplate | 34CIAIWI03 (C4739) | | | | | | | Vane | Housing | NL 400 | Casting | | | | | | pumps | Valve plate | DC 10 SINTER | Gas nitriding | | | | ## References - Kenneth Holmberg, Allan Matthews (1994); COATINGS TRIBOLOGY (Properties, Mechanisms, Techniques and Applications in Surface Engineering), ISBN: 978-0-444-52750-9, TRIBOLOGY AND INTERFACE ENGINEERING SERIES, 56 EDITOR: B.J. BRISCOE, (pp.550), - 2. B. Bhushan (2000); Modern tribology handbook, CRC Press, London, New York, Washington D C, - B. Bridshari (2004); Modern tribology handbook, CRC 11css, Echdon, New York, Washington B C, B. Podgornik, S. Hogmark, (2004); O. Sandberg, Influence of surface roughness and coating type on - the galling properties of coated forming tool steel, Surface and Coatings Technology 184. N. M. Renevier, V. C. Fox, D. G. Teer, J. Hampshire, (2000); Coating characteristics and tribological properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating, Surface and Coatings Technology 127, 24-37. - A Matthews, S Franklin and K Holmberg (2007); Tribological coatings: contact mechanisms and selection, JOURNAL OF PHYSICS D: APPLIED PHYSICS, J. Phys. D: Appl. Phys. 40, 5463–5475 doi:10.1088/0022-3727/40/18/S07. - 6 M. Živković, M. Milosavljević, P. Dašić (2021); Review of thermochemical procedures and machining methods in order to improve the operational properties of hydraulic piston pumps, 10. Simpozijum o termpodinamici i faznim dijagramima sa međunarodnim učešćem TDPD 2021, 25 i 26.06.2021. na Fakultetu Tehničkih nauka u Kosovskoj Mitrovici,(vidi izdanje i sve ostalo)