OPTIMIZATION OF ELECTROCHEMCAL DEPOSITION OF Zn-Mn-Al₂O₃ COMPOSITE COATINGS

Mihael Bucko¹, Marija Riđošić^{2,3}, Milorad Tomić², Jelena B. Bajat³

¹University of Defence, Military Academy, 33 Veljka Lukića Kurjaka St, 11000 Belgrade, Serbia, <u>mbucko@tmf.bg.ac.rs</u> ²University of East Sarajevo, Faculty of Technology Zvornik, Karakaj 34A, 75400 Zvornik, Republic of Srpska, mtomicc@yahoo.com ³Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia, mridjosic@tmf.bg.ac.rs, jela@tmf.bg.ac.rs

INTRODUCTION

The Zn alloy coatings that have found the broadest application range, are Zn-Ni, Zn-Fe, Zn-Co, Zn-Sn and Zn-Mn alloy. On the other hand, the Zn composite coatings, obtained by using electroplating baths with various dispersive fine phases, which may be both hard phases, such as SiC, Al₂O₃, MoS₂, TiO₂, SiO₂ and Si₃N₄, and soft phases such as polytetrafluoroethylene (PTFE) or graphene. The improvement of different features of a composite coating depends mainly on the size and the percentage of the incorporated fine particles, as well as on their distribution in the metallic matrix [1-3]. This work focuses on the development of a novel Zn-alloy-composite coating, i.e. the coating that will benefit from the insertion of both an additional metal and a ceramic particle into the zinc matrix.

THE AIM OF THE WORK: probing the electrodeposition of Zn-Mn/Al₂O₃ composite coatings from chloride bath and characterizing the obtained coatings in terms of their morphology and corrosion resistance.

EXPERIMENTAL

 \Box Plating parameters: chloride additive-free plating baths, temperature of 25 °C, deposition current density: 1-5 A dm⁻², agitation: magnetic stirring, ultrasound, Al₂O₃ particles: 300 nm, 10 µm

SEM/EDX, EIS, polarization measurements: chemical content, morphology, corrosion resistance in 3% NaCl

RESULTS AND DISSCUSION

Influence of Mn²⁺: Zn²⁺ ion ratio in the bath

Plating bath	R1 (mol·dm ⁻³)	R2 (mol·dm ⁻³) [Mn ²⁺]:[Zn ²⁺]=1:1	R3 (mol·dm ⁻³) [Mn ²⁺]:[Zn ²⁺]=1:2	R4 (mol·dm ⁻³) [Mn ²⁺]:[Zn ²⁺]=2:1				
KCl	3	3	3	3				
H ₃ BO ₃	0,42	0,42	0,42	0,42				
ZnCl ₂	0,45	0,45	0,45	0,45				
MnCl ₂ x4H ₂ O	-	0,45	0,25	0,9				
Al_2O_3	1,00	1,00	1,00	1,00				
10 μm Al ₂ O ₃ magnetic stirring, 1-4 A dm ⁻²								

1:1 Mn²⁺: Zn²⁺, 300 nm Al₂O₃ particles

JNF

Sample No.	Deposition c.d.	Deposition conditions	wt.% Mn	wt.% Al	calculated wt.% Al ₂ O ₃	wt.% O
1	5 A dm ⁻²	magnetic	5.8	0	0	12.2
2	4 A dm ⁻²	stirrer	5.2	0	0	11.5
3	5 A dm ⁻²	magnetic	5.3	2.6	4.8	13.8
4	4 A dm ⁻²	stirrer + Al_2O_3	4.7	2.4	4.5	11.0

5.9

4.9

1.0

0.7

12.8

9.7

1.8

1.3

Electrochemical impedance spectroscopy

ultrasound +

 Al_2O_3

 5 A dm^{-2}

 4 A dm^{-2}

5

References

1. F. C. Walsh, C. Ponce de Leon, A review of the electrodeposition of metal matrix composite coatings by inclusion of particles in a metal layer: an established and diversifying technology, Trans. IMF 92 (2014) 83-98.

2. H. Zheng, M. An, J. Lu, Corrosion behavior of Zn-Ni-Al₂O₃ composite coating, Rare Metals 25 (2006) 174–178. 3. B.M. Praveen, T.V. Venkatesha, Electrodeposition and properties of Zn-Ni-CNT composite coatings, J. Alloys and Compounds 482 (2009) 53-57.

Acknowledgements

This research was financed by the Ministry of Education, Science and Technological Development, Republic of Serbia (Contract No. 451-03-9/2021-14/200135) and Ministry for Scientific and Technological Development, Higher Education and Information Society of the Republic of Srpska (Contract No. 19.032/961-38/19).