Contemporary Materials I−2 (2010)

Contemporary Materials I−2 (2010)     Page 144 of 150

UDK 541.13:546.57


D. Jelić1,*, S. Mentus2,4, J. Penavin-Škundrić3, D. Bodroža3, B. Antunović1

1 University of Banja Luka, Faculty of Medicine, Department of Pharmacy, Republic of Srpska, B&H
2 University of Belgrade, Faculty of Physical Chemistry, Belgrade, Serbia
3 University of Banja Luka, Faculty of Technology, Department of General and Inorganic Chemistry, Republic of Srpska, B&H
4 Serbian Academy of Sciences and Arts, Belgrade, Serbia


Ther­mal de­com­po­si­ti­on of a com­mer­ci­al pow­der of sil­ver oxi­de (Ag2O,  Merck, p.a.), with the me­an par­tic­le di­a­me­ter of 740 nm has be­en in­ve­sti­ga­ted un­der non-isot­her­mal con­di­ti­ons in a re­du­cing at­mosp­he­re of 25% H2 in ar­gon. The pro­cess was conduc­ted and con­trol­led in a si­mul­ta­ne­o­us TG/DTA analyzer, at he­a­ting ra­tes of 2, 10 and 20 °C min-1. The re­si­du­al mass was al­ways aro­und 93,2 % of the ini­ti­al one, re­gar­dless of the he­a­ting ra­te, which, ac­cor­ding to the oxi­de sto­ic­hi­o­me­try, cor­re­sponds to me­tal­lic sil­ver as fi­nal pro­duct. The SEM mic­rop­ho­to­graphy in­di­ca­ted no sig­ni­fi­cant chan­ge in par­tic­le si­ze and morp­ho­logy du­ring re­duc­ti­on. The ther­mo­gra­vi­me­tric da­ta was used for ki­ne­tic analysis of re­duc­ti­on. Using Kis­sin­ger plot, the ini­ti­al va­lue of the ac­ti­va­ti­on energy was esti­ma­ted to amo­unt to 6.17 · 104 J mol-1. The ini­ti­al va­lu­es for ki­ne­tics pa­ra­me­ters we­re furt­her cal­cu­la­ted using dif­fe­rent met­hods of ki­ne­tic analysis.  Both ac­ti­va­ti­on energy (E) as a fun­cti­on of con­ver­si­on de­gree (α),  and pre-ex­po­nen­ti­al fac­tor (A) we­re cal­cu­la­ted by  eit­her the Fri­ed­man (Ea = 5,38 · 104 J mol-1, A = 1,49 · 106 s-1) or mul­ti-he­a­ting ra­te Co­ast-Red­fern (Ea = 5,97 · 104 J mol-1, A = 3,90 · 105 s-1) iso­con­ver­si­o­nal met­hods. A rat­her com­plex de­pen­den­ce of ac­ti­va­ti­on energy on the con­ver­si­on de­gree was ob­ser­ved.  A mo­re com­ple­te ap­pro­ach to de­ter­mi­ne the ki­ne­tic pa­ra­me­ters was do­ne by me­ans of non­li­ne­ar re­gres­si­on analysis (Ea = 6,00 · 104 J mol-1, A = 2,41 · 106s-1, n = 0,466 ).

Keywords: sil­ver oxi­de, non-isot­her­mal ki­ne­tics, iso­con­ver­si­o­nal met­hods, re­duc­ti­on pro­cess, ther­mo­gra­vi­me­try.


[1] D. D. Evanoff Jr., G. Chumanov, Synthesis and Optical Properties of Silver Nanoparticles and Arrays, Chem. Phys.Chem, 6 (2005) 1221−1231. PMid:15942971
[2] T. George, S. Joseph and S. Mathew, Synthesis and characterisation of nanophased silver tungstate, J. Metastable and Nanocrystalline Materials, 23 (2005) 141.

[3] M. Mazur, Electrochemically prepared silver nanoflakes and nanowires, Electrochemistry Communications 6 (2004) 400−403.

[4] P. C. Lee, D. J. Meisel, Adsorption and surface-enhanced raman dyes on silver and gold sols, Phys. Chem., 86 (1982) 3391−3395.

[5] G. R. Graybill, R. K. Grubbs, J. A. Gucinnski and D. F. Smith, New developments in very high rate silver oxide electrodes, J. Power Sources, 65 (1997) 47.

[6] S. Imamura, M. Ikebata, T. Ito and T. Ogita, Decomposition of ozone on a silver catalyst, Ind. Eng. Chem. Res. 30 (1991) 217 B.

[7] B. Dhandapani and S. T. Oyama, Gas phase ozone decomposition catalysts, Appl. Catal. B. 11 (1997) 129.

[8] K. Kiyono and K. Shiragami, Jpn. Pat. 10099 (1998) 646.
[9] M. Luo, X. Yuan and X. Zheng, Catalyst characterization and activity of Ag-mn, Ag-Co and Ag-Ce composite oxides for oxidation of volatile organic compounds, Appl. Catal. A.175 (1998)121.

[10] P. J. Birbara and T. A. Nallete, US Pat. 5 174 (1992) 974.
[11] J. R. Aylard, P. J. Birbara and T. A. Nalette, US Pat. 5 427 (1995) 751.
[12] J. J. Zhu, X. H. Liao, X. N. Zhao, H. Y. Hen, Preparation of silver nanorods by electrochemical methods, Materials Letters 49 (2001) 91−95.

[13] R. Pacios, R. Marcilla, C. Pozo-Gonzalo, J. A. Pomposo, H. Grande, J. Aizpurua, D. Mecer-reyes, Combined electrochromic and plasmonic optical responses in conductivity polymer/metal nanoparticle films, J. Nanosci. Nanotechnology 7 (2007) 2938−2941.
[14] W. L. Chou, D. G. Yu, M. C. Yang, The preparation and characterization of silver-loading cellulose acetate hollow fiber membrane for water treatment, Polym. Adv.Techn. 16 (2005) 600−608.

[15] A. Abousehly, R. El-mallaway and E. Yousef, Interaction of a polycrystalline silver powder with ozone, J. Mater. Sci. Lett. 19 (2000) 409.

[16] A. K. Burnham, L. N. Dinh, A comparation of isoconversional and model-fitting approaches to kinetic parameter estimation and application prediction, J. of Therm. A. and Cal. 89/2 (2007) 479−490.

[17] T. Akahira, T. Sunsone, Joint convention of four electrical institutes, Res. Rep. Chiba, Inst.Tech. 16 (1971) 22−31.
[18] H. E. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem. 29 (1957) 1702.

[19] C.-R. Li, T. B. Tang, A new method for analyzing non-isotherma thermoanalytical data from solid state reaction, J. Thermal Anal. 49 (1997) 1243.

[20] M. Maciejewski, Computitional aspects of kinetics analysis part B: The ICTAC kinetics project, Thermochimica Acta 355 (2000) 145.154.
[21] B. Delmon, In Handbook of Heterogeneous Catalysis; G. Ertl, H. Knözinger, J. Weitkamp, Eds.; (1997) 264.
[22] B. Delmon, Introduction á la cinétique hétérogéne, Technip: Paris, 1969, Chapter 11.
[23] H. H. Kung, Transition Metal Oxides: Surface Chemistry and Catalysis, Elsevier: New York 1989.