Садржај


Contemporary Materials I−2 (2010)

Contemporary Materials, I−2 (2010)     Page 117 of 123

UDK 539.194:541.135

LIQUID CRYSTALLINE WATER, QUANTUM MOLECULAR MACHINES & THE LIVING STATE
Mae-Wan Ho*

Institute of Science in Society, 29 Tytherton Road, London N19 4PZ, UK

Ab­stract:

It has be­en 18 years sin­ce the di­sco­very in my la­bo­ra­tory sug­ge­sting that li­ving or­ga­nisms are dyna­mic li­qu­id crystal­li­ne pha­ses in which all the mo­le­cu­les in the cells and tis­su­es of the body are alig­ned and mo­ving co­he­rently to­get­her, in­clu­ding espe­ci­ally the wa­ter mo­le­cu­les that are in­trin­sic to the li­qu­id crystal­li­ne ma­trix and es­sen­ti­al to the fun­cti­on of mac­ro­mo­le­cu­les. In ef­fect, the or­ga­nism de­pends on a mac­ro­sco­pic qu­an­tum co­he­ren­ce of in­di­vi­du­al mo­le­cu­lar energy mac­hi­nes. 
Re­cent in­ve­sti­ga­ti­ons using a ran­ge of sop­hi­sti­ca­ted spec­tro­sco­pic tec­hni­qu­es ha­ve in­de­ed re­ve­a­led that the li­qu­id crystal­li­ne (hydra­ti­on) wa­ter forms dyna­mi­cally co­he­rent units with pro­te­ins and nuc­le­ic acids, and ena­bles the mac­ro­mo­le­cu­les to fun­cti­on co­he­rently to­get­her.
The sa­me in­ve­sti­ga­ti­ons al­so re­ve­al that ions play the­ir pi­vo­tal ro­le in cel­lu­lar me­ta­bo­lism and sig­nal­ling thro­ugh in­ter­ac­ti­ons with hydra­ti­on wa­ter. De­spi­te the­se ma­jor advan­ces, the ul­ti­ma­te mystery of li­fe re­ma­ins tan­ta­li­zingly beyond our grasp.
Keywords: li­qu­id crystal­li­ne or­ga­nism, qu­an­tum co­he­ren­ce, mo­le­cu­lar energy mac­hi­nes, hydra­ti­on wa­ter, two-sta­tes wa­ter, ko­smo­tro­pe and cha­o­tro­pe, Law of matching wa­ter af­fi­ni­ti­es, mic­ro­do­ma­ins.

References

[1] M. W. Ho, The Rainbow and the Worm, the Physics of Organisms, 1993, 1998 (2nded), 2008 (3rded), World Scientific, Singapore, London.
[2] M. W. Ho, Dancing with macromolecules, Science in Society (2010) 12−16.
[3] D. N. LeBard and D. V. Matyushov, Ferroelectric hydration shells around proteins; electrostatics of the protein-water interface, J Phys Chem B 114 (2010) 9246–58. PMid:20578769
[4] S. H. Chen, M. Lagi, X. Chu, Y. Zhang, C. Kim, A. Faraone, E. Fratini and P. Baglioni. Dynamics of a globular protein and its hydration water studied by neutron scattering and MD simulations, Spectroscopy 24 (2010) 1−24.
[5] S. Ebbinghaus, S. J. Kim, S. M. Heyden, X. Yu, U. Heugen, M. Gruebele, D. M. Leitner and M. Havenith, An extended dynamical hydration shell around proteins, PNAS 104 (2007) 20749−52.

PMid:18093918    PMCid:2410073
[6] B. Born and M. Havenith, Terahertz dance of proteins and sugars with water. J Infrared Milli Terahz Waves 30 (2009) 1245−54.
[7] S. E. Pagnotta, F. Bruni, R. Senesi, and A. Pietropaolo. Quantum behaviour of water protons in protein hydration shell, Biophysical Journal 96 (2009) 1939−43.

PMid:19254553    PMCid:2717359
[8] S. Sen, D. Andreatta, S. Y. Ponomarev, D. L. Beveridge and M. A. Berg, Dynamics of water and ions near DNA: comparison of simulation to time-resolved Stokes-shift experiments, J Am Chem Soc 131 (2009) 1724−35.

PMid:19191698    PMCid:2750815
[9] C. Yamamhata, D. Collard, T. Takekawa, M. Kumemura, G. Hashiguchi and H. Fujita, Humidity dependence of charge transport through DNA revealed by silicon-based nanotweezers manipulati-on, Biophysical J 94 (2008) 63−70.

PMid:17827222    PMCid:2134877
[10] J. Berashevich and T. Chakraborty, How the surrounding water changes the electronic and magnetic properties of DNA, J Phys Chem B 112 (2008) 14083–9

PMid:18844404
[11] W. M. Ho, The Rainbow Ensemble, Science in Society (2010) 16−1.
[12] M. W. Ho, Dancing with ions, Science in Society 15 (2010) 10−11.
[13] K. D. Collins, Charge density-dependent strength of hydration and biological structure, Bio-physical J 72 (1997) 65−78.
[14] K. D. Collins, Ion hydration: implications for cellular function, polyelectrolytes, and protein crystallization, Biophysical Chemistry 119 (2006) 271−81.
PMid:16213082
[15] J. L. Silva, T.C.R.G. Vieira, M. P. B. Gomes, A. P. A. Bom, L. Mauricio, T. R. Lima, M. S. Freitas, D. Ishimaru, Y. Cordeiro and D. Foguel, Accounts of Chemical Research 43 (2010) 271−9.
[16] G. Ling, A Physical Theory of the Living State: The Association-Induction Hypothesis, Blais-del, Waltham, Massachusetts 1962.
[17] G. Ling, In Search of the Physical Basis of Life, Plenum Press, New York 1984.
[18] G. N. Ling, Life at the Cell and Below-Cell Level, The Hidden History of a Fundamental Revolution in Biology, Pacific Press, New York 2001.
[19] M. W. Ho, Strong medicine for cell biology, Science in Society (2004) 32−33.
[20] J. Needham, Order and Life, Yale University Press, New Haven 1936.
[21] G. R. Welch and J. S. Clegg, From protoplasmic theory to cellular systems biology: a 150-year reflection, Am J Physiol Cell Physiol 2−98 (2010) C1280–90.
[22] Traffic, The International Journal of Intracellular Transport, http://www.traffic.dk/virtual_issue_page.asp?id=8.
[23] M. W. Ho, What’s the cell really like?, Science in Society (2004) 46−47.
[24] P. Wiggins, Life depends upon two kinds of water, PLoS ONE 1 (2008) e1406.
   PMid:18183287    PMCid:2170473
[25] M. Chaplin, The importance of cell water (2004) 42−45.