Садржај


Contemporary Materials I−1 (2010)

Contemporary Materials, I–1 (2010)     Page 94 - 97

UDK 620.1:541.135.5

REGULARITY-CHAOS TRANSITION TEMPERATURE AND GUISBIERS-BUCHAILLOT EQUATION

D. Malivuk, S. Nježić, S. Lekić, Z. Rajilić

University of Banja Luka, Faculty of Science and Mathematics, Mladena Stojanovića 2, 78000 Banja Luka, Bosnia and Herzegovina 

Abstract

A fo­cus of fron­tli­ne in­ter­di­sci­pli­nary re­se­arch to­day is the de­ve­lop­ment of the con­cep­tual fra­me­work and the ex­pe­ri­men­tal bac­kgro­und of the sci­en­ce of na­no­struc­tu­red ma­te­ri­als and the per­spec­ti­ves of its tec­hno­lo­gi­cal ap­pli­ca­ti­ons. G. Gu­is­bi­ers and L. Bucha­il­lot fo­und out the ge­ne­ral equ­a­ti­on (GBE) which was ba­sed only on the sur­fa­ce area to vo­lu­me ra­tio of na­no­struc­tu­res and sta­ti­stics (Fer­mi–Di­rac or Bo­se–Ein­stein) follo­wed by the par­tic­les in­vol­ved in the con­si­de­red phe­no­me­na (mel­ting, ferromagnetism, vi­bra­tion and su­per­con­duc­ti­vity). In this pa­per, we con­si­der anot­her pheno­me­non, the regu­la­rity-cha­os tran­si­tion, and find its con­nec­tion with GBE. We ha­ve per­for­med the com­pu­ta­ti­o­nal ex­pe­ri­ments with one hydro­gen mo­le­cu­le and one grap­he­ne she­et. H2-C in­ter­ac­ti­ons are de­scri­bed by Len­nard-Jo­nes po­ten­tial. The main goal of our ex­pe­ri­ments is find out the cri­ti­cal tem­pe­ra­tu­res of re­gu­la­rity-cha­os tran­si­tion. The re­sults of com­pu­ta­tion de­ri­ved using Run­ge-Kut­ta-Fehlberg met­hod show ap­pro­xi­ma­te agreement with GBE.

Keywords: Hydro­gen mo­le­cu­le, cri­ti­cal tem­pe­ra­tu­re, re­gu­la­rity-cha­os tran­si­tion, Gu­is­bi­ers-Buc­ha­il­lot equ­a­ti­on.

Full Text (PDF)

References

[1] J. Jortner, C. N. R. Rao, Nanostructured advanced materials. Perspectives and directions, Pure Appl. Chem. Vol. 74 (2002)1491–1506.
[2] W. H. Qi, B.Y.Huang, M.P.Wang, Z.Li, Z.M.Yu, Generalized bond-energy model for cohesive energy of small metallic particles, Phys. Lett. A Vol. 370 (2007) 494–498.

[3] T. Enoki, Physics and Chemistry of Graphene, (2009) (Hackensack: Pan Stanford Publishing).
[4] G. K. Dimitrakakis, E. Tylianakis, G. E. Froudakis, Pillared Graphene: A New 3-D Network Nanostructure for Enhanced Hydrogen Storage, Nano Lett. Vol. 8 (2008) 3166-3170.
PMid:18800853
[5] T. Heine, L. Zhechkov, S. Patchkovskii, G. Seifert, Novel Carbon Materials can Store and Sieve Hydrogen, SPIE Newsroom (2007) 10.1117/ 2.1200704.0714.
[6] G. Guisbiers, Size-Dependent Materials Properties Toward a Universal Equation, Nanoscale Res. Lett. Vol. 5 (2010) 1132-1136.
PMid:20596422    PMCid:2894066
[7] G. Guisbiers, L. Buchaillot, Universal Size/Shape-Dependent Law for Characteristic Tempe-ratures, Phys. Lett. A Vol. 374 (2009) 305-308.