Contemporary Materials I−1 (2010)

Contemporary Materials, I−1 (2010)     Page 19 - 30

UDK 541.182:535.3


M. A. Montealegre, G. Castro, P. Rey, J. L. Arias, P. Vázquez, M.González

AIMEN Technology Centre, Relva 27 A, Torneiros, 36410 Porriño, Pontevedra, Spain


In­du­strial ap­pli­ca­ti­ons re­qu­i­re parts of com­po­nents with spe­ci­fic sur­fa­ce proper­ti­es such are good cor­ro­sion re­si­stan­ce, we­ar re­si­stan­ce and hard­ness. Al­loys with tho­se pro­per­ti­es are usu­ally very ex­pen­si­ve and the­re is a gre­at in­te­rest in re­du­cing the cost of com­po­nents for ful­fil­ling the­se requ­i­re­ments. In this sen­se, la­ser sur­fa­ce processing has been used as a cost-ef­fec­ti­ve tec­hni­que to im­pro­ve the sur­fa­ce pro­per­ti­es of ma­te­ri­als, by use of the la­ser be­am he­at for mo­di­fi­ca­tion of its struc­tu­re and physi­cal cha­rac­te­ri­stics. La­ser sur­fa­ce tre­at­ments can be di­vi­ded in­to di­rect proces­ses, which only need the ge­ne­ra­ted he­at, such are har­de­ning and mel­ting, and pro­ces­ses which need fil­ler ma­te­rial as al­loying and clad­ding. The­re­fo­re, the aim of this pa­per is to summari­ze the results of se­ve­ral works ba­sed on la­ser sur­fa­ce tre­at­ments, in par­ti­cu­lar, hardening and mel­ting of hot and cold work ste­els, and la­ser clad­ding of for­ming to­ols with nanoparticles. The mic­ro­struc­tu­ral cha­rac­te­ri­za­tion and mec­ha­ni­cal pro­per­ti­es (microhard­ness, we­ar re­si­stan­ce) will be de­scri­bed in each ca­se.

Keywords: La­ser, clad­ding, har­de­ning, na­no­par­tic­les, Nd:YAG la­ser, di­o­de la­ser.


[1] http://www.worldautosteel.org/
[2] D. Schuocker, Handbook of the Eurolaser Academy, Ed. Chapman-Hall, 1998.
[3] W. M. Steen, “Laser Material processing”, Springer, 2003.
[4] M. Heitkemper, Al Fischer, Ch. Bohne, A. Pyzalla, Wear mechanisms of laser-hardened martensitic high-nitrogen-steels under sliding wear, Wear 250 (2001) 477-487.

[5] T.R. Jervis, M. Nastasi, A.J. Griffin, Jr., T.G. Zocco, T. N. Taylor, S. R. Foltyn, Tribological effects of excimer laser processing of tool steel, Surface and Coatings Technology 89 (1997) 158-164.

[6] G. Duffet, P. Sallamand, A. B. Vannes, Improvement in friction by cw Nd:YAG laser surface treatment on cast iron cylinder bore, Applied Surface Science 205 (2003) 289-296.

[7] M. Bonek, L.A. Dobrzanski, E. Hajduczek, A. Klimpel, Structure and properties of laser alloyed surface layers on the hot-work tool steel, Journal of Materials Processing Technology 175 (2006) 45-54.

[8] L. A. Dobrzanski M. Bonek, E. Hajduczek, A. Klimpel, Alloying the X40CrMoV5-1 steel surface layer with tungsten carbide by the use of a high power diode laser, Applied Surface Science 247 (2005) 328-332.

[9] L. A. Dobrzanski, M. Bonek, E. Hajduczek, A. Klimpel, A Lisiecki, Comparison of the structures of the hot-work tool steels laser modified surface layers, Journal of Materials Processing Techonolgy 164-165 (2005) 1014-1024.

[10] D. I. Pantelis, E. Bouyouri, N. Kouloumbi, P.Vassiliou, A.Koutsomichalis, Wear and corrosion resistance of laser surface hardened structural steel, Surface and Coatings Technology 298 (2002)125-134.

[11] K. H. Lo, F. T. Cheng, C. T. Kwok, H. C. Man, Effects of laser treatments on cavitation erosion and corrosion of AISI 440C martensitic Stainless steel, Material Letters 58 (2003) 88-93.

[12] S Kaç, J. Kusinski, SEM and TEM microstructural investigation of high-speed tool steel after laser melting, Materials Chemistry and Physics. 81 (2003 510-512.

[13] W. Darmawan, J. Quesada, R. Marchal, Characteristics of laser melted AISI T1 high speed steel and its wear resistance, Surface Engineering 23 (2007) 112-119.

[14] H. Fredriksoon, S. Brising, Formation of carbides during solidification of high speed steels, Scand J Metal. 5 (1976) 268-275.
[15] C. T. Kwok, F. T. Cheng, H. C Man, Microstructure and corrosion behavior of laser surface-melted high-speed steels, Surface and Coating Technology 202 (2007) 336-348.

[16] M. Li, Y. He, X. Yuan, Sh. Zhang, Microstructure of Al2O3 nanocrystalline/cobalt-based alloy composite coatings by laser deposition, Materials and Design 27 (2006) 1114–1119

[17] M. Li, Sh. Zhanga, H. Li, Y. Hea, J.-H. Yoonb, T.-Y. Cho, Effect of nano-CeO2 on cobalt-based alloy laser coatings, Journal of materials processing technology 202(2008) 107–111

[18] Sh. H. Zhang, M. X. Li, T. Y. Cho, J. H. Yoon, Ch. G. Lee, Y. Z. He, Laser clad Ni-base alloy added nano- and micron-size CeO2 composites, Optics & Laser Technology 40 (2008) 716–722.

[19] E. Rabinowicz, Friction and Wear of materials, John Wiley and Sons, 1995.