Contemporary Materials I−1 (2010)

Contemporary Materials, I–1 (2010)      Page 4 - 18

UDK 530.145:546.26


M. Logar1, B.  Jančar1, A. Rečnik2, D. Suvorov1

1 Advanced Materials Department, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
2 Nanostructured Materials Department, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia


Mul­ti­layers for­med from we­ak polyions of polyallyla­mi­ne (PAH) and polyacrylic acid (PAA), posses­sing ion-ex­chan­ge­a­ble car­boxylic gro­ups we­re used to bind the me­tal ca­ti­ons wit­hin the film. By sub­se­qu­ent wet che­mi­cal re­ac­tion pro­cess of the in­cor­po­ra­ted me­tal ions, pu­re zinc sul­fi­de (ZnS) with a nar­row si­ze di­stri­bu­tion was for­med wit­hin the PEMs. The si­ze and con­cen­tra­tion of the inor­ga­nic nanopar­tic­les in polyion ma­trix we­re con­trol­led by the con­cen­tra­tion of me­tal – bin­ding car­boxylic acid gro­ups as de­ter­mi­ned by the mul­ti­layer as­sembly pH. Furt­her­mo­re, the me­tal ca­tion loading and re­ac­tion met­ho­do­logy co­uld be repeatedly cycled to in­cre­a­se the si­ze and volu­me den­sity of the na­no­par­tic­les. Furt­her­mo­re, the polyelec­trolyte mul­ti­layer films we­re used as tem­pla­tes for the ce­ra­mic (TiO2) thin film fa­bri­ca­tion with a mo­di­fied solgel reac­tion. Since the multi­layer as­sembly is per­for­med from the polyion aqu­e­o­us so­lu­ti­ons, the mul­ti­layers con­tain so­me wa­ter that, af­ter in­fil­tra­tion of the or­ga­no­me­tal­lic pre­cur­sor, ena­bles in-si­tu re­ac­tion of hydrolysis and con­den­sa­tion re­ac­tion. Af­ter calcination, nanocrystal­li­ne TiO2 thin films with thic­kness, con­trol­la­ble by the num­ber of the polyion layers in the ma­trix, we­re for­med. With the in-si­tu synthesis ap­pro­ach of inor­ga­nic nanstruc­tu­res in polyelec­trolyte mul­ti­layer ma­trix, the ability of ob­ta­i­ning the con­trol over the film thic­kness and si­ze of the inor­ga­nic par­tic­les has enabled the tu­ning of the op­ti­cal pro­per­ti­es of as fabricated inor­ga­nic-or­ga­nic com­po­si­te films, as well as nanocrystal­li­ne ce­ra­mic films.

Keywords: Polyelec­trolyte mul­ti­layer, in-si­tu synthe­sis, ZnS na­no­par­tic­les, Na­no­crystal­li­ne TiO2 film.


[1] A. Heilmann, Polymer Films with Embed-ded Metal Nanoparticles, 2002
[2] R. S. Kane, R. E. Cohen, R. Silbey, Lang-muir,15,1,1999

[3] R. Bhargava, Properties of Wide Bandgap II-VI Semiconductors, 1997
[4] G. Decher, J. D. Hong, J. Schmitt, Thin solid films, 210/211, 831

[5] S. Dante, Z. Hou, S. Risbud, P. Stroeve, Langmuir, 15,2176, 1999

[6] A. K. Dutta, G. Jarero, L. Zhang, P. Stroeve, Chem. Mater. 12, 176, 2000

[7] S. Joly, R. Kane, L. Radzilowski, T. Wang, A. Wu, R. E. Cohen, E.L. Thomas, M. F. Rubner, Langmuir, 16,1354,2000

[8] M. Logar, B. Jančar, D. Suvorov, R. Ko-stanjšek, Nanotechnology 18, 325601, 2007

[9] M. Grätzel, Chemistry, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells, J. Photochem.Photobiol. A, 164 3(2004).

[10] A. Rothschild, F. Edelman, Y. Komem, F. Coasadey, Sensing behavior of TiO thin films exposed to air at low temperatures, Sens. Actuators B: Chemical, 67 282(2000).

[11] Hsuan-Fu Yu, Fa-Chun Hu, Preparation and characterization of transparent TiO2 thin films coated on fused-silica substrates, J Sol-Gel Sci Technol., 52 158 (2009).

[12] S. Mo, W. Ching, Electronic and optical properties of three phases of titania dioxide: Rutile,anatase, and brookite, Phys. Rev.B, 51 13023 (1995).

[13] A. Aidla, T. Ustare, A. A.Kiisler, J. Aarik, V. Sammelselg, Thin Solid Films, Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition, 305 270 (1997).
[14] M. O. Abou-Helal, W. T. Seeber, Preparation of TiO2 thin films by spray pyrolysis to be used as a photocatalyst, Appl. Surf. Sci., 195 53 (2002).

[15] Y. Choi, S. Yamamoto, T. Umebayashi, M. Yoshikawa, Fabrication and characterization of anatase TiO2 thin film on glass substrate grown by pulsed laser deposition,Solid State Ionics, 172 105 (2004).

[16] L. Hu, T. Yoko, H. Kozuka, Thin Solid Films, Effects of solvent on properties of sol-gel-derived TiO2 coating films, 219 18 (1992).
[17] P. Chrysicopoulo, D. Davazoglou, C. Trapalis, G. Kordas, Optical properties of very thin (<100 nm) sol–gel TiO2 films, Thin Solid Films, 323 188 (1998).
[18] Y. Li, J. Hagen, W. Schaffrath, P. Otschik, D. Haarer, Titanium dioxide films for photovoltaic cells derived from a sol-gel process, Sol. Energy Mater. Sol. Cells, 56 167 (1999).

[19] K. K. Saini, S. D. Sharma, Chanderkant, K. Meenakshi, D. Singh, C. P. Sharma, Structural and optical properties of TiO2 thin films derived by sol–gel dip coating process, J. of Non-crystalline solids, 353 2469 (2007).
[20] D. W. Wang, F. Caruso, Polyelectrolyte-Coated Colloid Spheres as Templates for Sol−Gel Reactions, Chem. Mater., 14 1909 (2002).

[21] D. W. Wang, A. Caruso, F. Caruso, Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Sphe-res A Novel Route to Tune Pore Morphology, Chem. Mater., 13 364 (2001).

[22] D. W. A. Caruso, F. Caruso, Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres A Novel Route to Tune PoreMorphology, Chem. Mater., 13 364 (2001).

[23] S. Joly, R. Kane, L. Radzilowski, T. Wang, A. Wu, R. E Cohen, E. L. Thomas, M. F. Rubner, Multilayer nanoreactors for metallic and semiconducting Particles. Langmuir 16, 1354 (2000)

[24] R. Vacassy, S. M. Scholz, J. Dutta, C. J. G. Plummer, R. Houriet, H. Hofmann, Synthesis of controlled spherical zinc sulfide particles by precipitation from homogeneous solutions. J. Am. Cheram.Soc. 81, 2699 (1988)

[25] T. C. Wang, M. F. Rubner, R. E. Cohen, Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: Controlling metal concentration and nanoparticle size. Langmuir 18, 3370 (2002)

[26] K. Manzoor, V. Adotyaq, S. R Vadera, N. Kumar, T. R. N. Kutty, Spontaneous organisation of ZnS nanoparticles into monocrystalline nanorods with highly enhanced dopant-related emission. J.Phys.Chem.Solids 66, 1164 (2005)

[27] R. L. Penn, J. F. Banfield, Imperfect oriented attachment: a mechanism for dislocation generation in defect-free nanocrystals. Science 281, 969 (1998)

[28] R. L. Penn, G. Oskam, G. J. Sterathmann, P. C. Searson, A. T. Stone, D. R. Veblen, Epitaxial Assembly in Aged Colloids. J. Phys.Chem. B 105, 2177 (2001)

[29] F. Huang, Z.Hengzhong, J. F. Banfield, Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett.3, 373 (2003)

[30] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289, 751 (2000)

[31] K. Dutta, S. Manna, S. K. De, Optical and electrical characterizations of ZnS nanopartic-les embedded in conducting polymer. Synth. Met. 159, 315 (2009)

[32] Y. Wang, N. Herron, Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem., 95, 525 (1991)

[33] N. Kumbhojkar, V. V. Nikesh, A. Kshirsagar, Photophysical properties of ZnS nanoclusters. J. App. Phys., 88, 6260 (2000)

[34] D. Denzler, M. Olschewski, K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. App. Phys. 84, 2841 (1998)

[35] B. Bhattacharjee, D. Ganduli, S. Chaudhuri, Growth Behavior of CdS Nanoparticles Embedded in Polymer and Sol-Gel Silica Matrices: Re-lationship with Surface-State Related Luminescence. J. of Fluorescence 12, 369 (2002)

[36] C. R. Wold, H. Ni, M. D. Soucek, Model reaction study on the interaction between the inorganic and organic phases in drying oil based cera-mer coatings. Chem. Mater., 13, 3032 (2001)

[37] E. A. Barringer, H. K. Bowen, High-purity, monodisperse TiO2 powders by hydrolysis of titanium tetraethoxide. 1. Synthesis and physical properties. Langmuir, 1, 414(1985)

[38] F. P. Rotzinger, J. M. Kessekman-Truttmann, S. J. Hug, V. J. Shklover, M. Graetzel, Structure and vibrational spectrum of formate and acetate adsorbed from aqueous solution onto the TiO2 rutile (110) surface. Phys. Chem.B, 108, 5004 (2004)

[39] J. D. Mendelsohn, C. J. Barrett, V. V. Chan, A. J. Pal, A. M. Mayes, M. F. Rubner, Fabrication of microporous thin films from polyelectrolyte multilayers. Langmuir 16, 5017 (2000)

[40] S. Monticone, R. Tufeu, A. Kanaev, E. Scolan, C. Sanchez, Influence of deposition conditions on the structural characteristics of sublimated CdTe thin films. App. Surf. Sci., 162/163, 565 (2000)

[41] J. Kim, S. Fujita, Shiratori, S. Fabrication and characterization of TiO2 thin film prepared by a layer-by-layer self-assembly method. Thin solid films, 499, 83 (2006)

[42] T. Dittrich, Porous Ti02: Electron transport and application to dye sensitized injection solar cells. Phys. Stat. sol. (a), 182, 447 (2000)

[43] A. E. J. Gonzalez, S. G. Santiago, Structural and optoelectronic characterization of TiO2 films prepared using the sol–gel technique. Semi-cond. Sci. technology, 22, 709 (2007)
[44] O. Madelung, B. C. Taylor, Introduction to Solid State theory (Springer-Verlag, Berlin, 1978)
[45] R. A. Smith, Semiconductors (Cambridge University press, Cambridge, 1978)
[46] L. Ge, M. Xu, M. Sun, H. Fang, Influence of calcination ambient and film thickness on the optical and structural properties of sol-gel TiO2 thin films. Mat. Res. Bull. 41, 1596 (2006)

[47] P. K. Khanna, N. Singh, S. Charan, Synthesis of nano-particles of anatase-TiO2 and prepa-ration of its optically transparent film in PVA. Materials letters, 61, 4725 (2007)