Садржај


Contemporary Materials II−1 (2011)

Contemporary Materials II−1 (2011) Page 45 of 50

UDK 539.074.5:548.19

doi:10.5767/anurs.cmat.110201.en.045M

ULTRATHIN COATINGS OF ELECTRODES AND INFLUENCE OF PHONONS ON AN INCREASE OF CONDUCTIVITY OF LI-ION BATTERIES

D. Lj. Mirjanić1,*, J. P. Šetrajčić1,2, S. S. Pelemiš3, S. Armaković2
1 The Academy of Sciences and Arts of the Republic of Srpska, 78000 Banja Luka, Bana Lazarevića st. 1, Republic of Srpska, B&H

2 University of Novi Sad, Faculty of Sciences, Department of Physics, 21000 Novi Sad, Trg Dositeja Obradovića 4, Vojvodina, Serbia
3 University of Eastern Sarajevo, Faculty of Technology, Karakaj bb, 75400 Zvornik, Republic of Srpska, B&H

Abstract
This pa­per pre­sent the re­sults of re­se­arch of be­ha­vi­o­ur of pho­non sub-system in ul­trat­hin co­a­tings that are ap­plied on elec­tro­des in Li-ion bat­te­ri­es and that in­cre­a­se the ef­fi­ci­ency of ion tran­sport. Using the met­hod of Green fun­cti­ons it was de­mon­stra­ted that in ul­trat­hin films, in­cre­a­sed mec­ha­ni­cal oscil­la­ting of crystal­li­ne lat­ti­ce and for­ming of stan­ding wa­ves oc­cur, whi­le, ther­mal ca­pa­ci­ti­ve­ness and con­duc­tion of the ove­rall co­a­ting dec­re­a­ses. With its in­cre­a­sed oscil­la­ting, pho­nons re­le­a­se the ions cap­tu­red on and wit­hin elec­tro­des, and in­flu­en­ce the in­cre­a­se of ef­fi­ci­ency of ion con­duc­ti­vity.

Keywords: ion con­duc­ti­vity, Li-ion bat­te­ri­es, ul­trat­hin films, pho­nons, he­at ca­pa­city.

Full Text (PDF)

References

[1] J. M. Tarascon, M. Armand, Nature, 414, (2001) 359−367.
[2] P. L. Taberna, S. Mitra, P. Poizot, P. Simon & J. M. Tarascon, High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications, Nature Materials 5 (2006) 567–573.

[3] S. Pejovnik, R. Dominko, M. Bele, M. Gaberscek and J. Jamnik, Journal of Power Sources, Vol. 184, Issue 2, 593-597 (2008).

[4] J. Hong, Ch. Wang, U. Kasavajjula, Kinetic behavior of LiFeMgPO4 cathode material for Li-ion batteries, Journal of Power Sources 162 (2006) 1289 –1296.

[5] Yoon Seok Jung, Andrew S. Cavanagh,b Anne C. Dillon, Markus D. Groner, Steven M. George, and Se-Hee Leea, Enhanced Stability of LiCoO2 Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition, Journal of The Electrochemical Society, 157, 1, A75-A81,
[6] D. Popov, S. K. Jaćimovski, B. S. Tošić, J. P. Šetrajčić, Physica A vol.317, 129-139 (2003).
[7] B. S. Tošić, J. P. Šetrajčić, D. Lj. Mirjanić, Z.V. Bundalo, Physica A vol. 184, 354-366 (1992).

[8] S. G. Davison and M. Steslicka: Basic Theory of Surface States, Clarendon, Oxford (1996).
[9] M. Prutton: Introduction to Surface Physics, Clarendon, Oxfod (1995).
[10] M. Tkach, V. Holovatsky, O. Voitsekhivska, Physica E vol.11, 17-26 (2001).
[11] V.M. Golovach, G.G. Zegrya, A.M. Makhanets, I.V. Pronishin, N.V. Tkach, Semiconductors, vol.33/5, 564-568 (1999).

[12] J.M.Wesselinowa, Phys.Stat.Sol. (b), vol. 223, 737 (2001).

[13] J.M.Wesselinowa, Phys.Stat.Sol. (b), vol. 229, 1329 (2002).

[14] B.S. Tošić: Statisticka fizika, PMF, Novi Sad (1978).
[15] S. Doniach, E.H. Sondheimer: Green's Functions for Solid State Physicists, Imperial College Press, London (1999).
[16] C. Kittel, Introduction to Solid State Physics, Wiley, New York (1986).
[17] H. Ibach, H. Lüth, Solid–State Physis, An Introduction to Principles of Material Science 3rd edition, Springer, Berlin / Heidelberg / New York (2003).
[18] G. Strobl, Condensed Matter Physics, Crystals, Liquid Crystals and Polymers, Springer, Berlin/Heidelberg/New York (2004).
[19] V.M. Agranovich and M.D. Galanin: Migration of Electron Energy Excitations in Condensed Matter, Nauka, Moscow (1978).