Садржај


Contemporary Materials II−1 (2011)

Contemporary Materials II−1 (2011) Page 18 of 26

UDK 620.193/.199

MODELING OF SELF-HEALING MATERIALS USING NANOCONTAINERS
N. Filipović1,2,*, D. Petrović1,2, M. Obradović1,2, A. Jovanović3, S. Jovanović3, D. Baloš3, M. Kojić2,4

1Faculty of Mechanical Engineering, University of Kragujevac, Sestre Janjić 6, Serbia
2Research and Development Center for Bioengineering, BioIRC, Kragujevac, Serbia
3Risk-technologies, GmbH, Stuttgart, Germany
4Methodist Hospital Research Institute, Houston, USA

Abstract
The sur­fa­ce de­fects of the ma­te­rial are dif­fi­cult to de­tect and dif­fi­cult to re­pa­ir. A grand chal­len­ge in ma­te­ri­als sci­en­ce is to de­sign „smart“ synthe­tic system that can re-esta­blish the con­ti­nu­ity and in­te­grity of the da­ma­ged area. Re­cent re­se­arch of the na­no­con­ta­i­ners with pro­cess of self-he­a­ling ma­te­ri­als pro­mi­ses a good ave­nue for new smart na­no­co­a­ting in­ter­fa­ces. We use two dif­fe­rent mo­de­ling ap­pro­ac­hes, di­scre­te and con­ti­nu­um, to in­ve­sti­ga­te co­a­ting sub­stra­tes that con­tain na­no­sca­le de­fects with he­a­ling agents. The di­scre­te mo­de­ling uses the Dis­si­pa­ti­ve Par­tic­le Dyna­mics (DPD) met­hod with usual three for­ces: re­pul­si­ve, dis­si­pa­ti­ve and ran­dom for­ces, as well as ad­di­ti­o­nal for­ces which bo­und he­a­ling agents to me­tal sub­stra­te. The con­ti­nu­um mo­de­ling uses Fi­ni­te Ele­ment Met­hod (FEM) with dif­fe­rent dif­fu­si­vity and flu­xes. The ini­tial re­sults show what the ne­ces­sary sha­re is, in per­cen­ta­ges, of the in­hi­bi­tors in na­no­con­ta­i­ners, to pro­tect the me­tal sur­fa­ce which is tre­a­ted with the­se he­a­ling agents. Furt­her ap­pli­ca­tion of mo­de­ling co­u­pled with da­ta mi­ning tec­hno­logy co­uld help fa­ster de­ve­lop­ment of new ac­ti­ve mul­ti-le­vel pro­tec­ti­ve systems for fu­tu­re ma­te­ri­als.

Keywords: self-he­a­ling ma­te­rial pro­cess, dis­si­pa­ti­ve par­tic­le dyna­mics (DPD), fi­ni­te elеment met­hods (FEM), na­no­co­a­ting.

Full Text (PDF)

References

[1] M. L. Zhe­lud­ke­vich, D. G. Shchu­kin, K. A. Yasa­kau, K. Moh­wald, and M. G. S. Fer­re­i­ra, An­ti­cor­ro­sion Co­a­tings with Self-He­a­ling Ef­fect Ba­sed on Na­no­con­ta­i­ners Im­preg­na­ted with Cor­ro­sion In­hi­bi­tor, Chem. Ma­ter. 19 (2007) 402−411.
[2] S. Tyagi, J. Y. Lee, G. A. Bux­ton, C. A. Ba­lazs,  Using Na­no­com­po­si­te Co­a­tings To Heal Sur­fa­ce De­fects, Mac­ro­mo­le­cu­les 37 (2004)  9160 −9168.

[3] N. Filipovi
ć,  D. J. Ravnić, M. Kojić, S. J. Ment­zer, S. Ha­ber, A. Tsu­da, In­ter­ac­ti­ons of Blood Cell Con­sti­tu­ents: Ex­pe­ri­men­tal in­ve­sti­ga­tion and Com­pu­ta­ti­o­nal Mo­de­ling by Di­scre­te Par­tic­le Dyna­mics Al­go­rithm, Mic­ro­va­scu­lar Re­se­arch 75 (2008b) 279−284.

[4] R. D. Gro­ot and P. B. War­ren,  Dis­si­pa­ti­ve par­tic­le dyna­mics: Brid­ging the gap bet­we­en ato­mi­stic and me­so­sco­pic si­mu­la­tion, J. Chem. Phys. 107(11)(1997) 4423−4435.

[5] K. Boryczko, W. Dzwi­nel, D. Yuen, Dyna­mi­cal clu­ste­ring of red blood cells in ca­pil­lary ves­sels, J. Mol . Mo­del 9 (2003) 16−33.

[6] N. Filipović, M. Kojić, A. Tsu­da, Мo­de­ling throm­bo­sis using dis­si­pa­ti­ve par­tic­le dyna­mics met­hod, Phil Trans Royal 366 (2008a) 3265−3279.

[7] P. J. Ho­o­ger­brug­ge and J. M. V. A. Ko­el­man,  Si­mu­la­ting mic­ro­sco­pic hydrodyna­mic phe­no­me­na with dis­si­pa­ti­ve par­tic­le dyna­mics, Europhys. Lett. 19 (1992) 155−160.

[8] A. Jovanović and N. Filipović, In­no­va­ti­ve mo­del­ling met­hods in da­ma­ge as­ses­sment: ap­pli­ca­tion of dis­si­pa­ti­ve par­tic­le dyna­mics to si­mu­la­tion of da­ma­ge and self-he­a­ling of polymer co­a­ted sur­fa­ces, J. The­o­re­ti­cal and Ap­plied Mec­ha­nics 44 (2006) 637−648.