Садржај


Contemporary Materials III−1 (2012)

Contemporary Materials, III−1 (2012)          Page 86 of 92

UDK 678.7.091.3

INVESTIGATION OF POTENTIONAL USE OF RECYCLED POLY(ETHYLENE TEREPHTHALATE) IN POLYURETHANE SYNTHESIS

I. Ristić1,*, S. Cakić2, O. Ilić2, J. Budinski-Simendić1, M. Marinović-Cincović3

1 University of Novi Sad, Faculty of Technology, Bul. Cara Lazara 1,
2 University of Niš, Faculty of Technology, Leskovac, Bul. Oslobodjenja 124,
3 University of Belgrade, Institute of nuclear science Vinča 

Abstract

This paper presents an outline of developed methods for chemical recycling of postconsumer poly(ethylene terephthalate) (PET) waste bottles. Oligoesters (obtained by chemical recycled PET) with 2,2-bis (hydroxyl methyl) propionic acid, as hydrophobic monomer, and isophorone diisocyanate as cross-linker, in the presence of di-n-dibutyl tin(IV)dilaurate catalyst, were used for polyurethane dispersions. Molecular masses of obtained products were analyzed by gel permeation chromatography. Infra-red spectroscopy was used for molecular structures analysis. Thermal properties were evaluated by using differential scanning calorimetry and thermogravimetric analysis.

Keywords: recycling, poly(ethylene terephthalate), polyurethane dispersion.

Full Text (PDF)

References

 
[1] U. R. Vaidya, V. M. Nadkarny, Unsaturated polyesters from PET waste: Kinetics of polycondensation. J Appl Polym Sci, 34, 1 (1987) 235-245.
[2] M. R. Patel, J. V. Patel, D. Mishra, V. K. Sinha, Synthesis and characterization of low volatile content polyurethane dispersion from depolymerised polyethylene terphthalate, J Polym Eviron, 15 (2007) 97-105.
[3] N. D. Pingale, V. S. Paleker, S. R. Shukla, Glycolysis of Postconsumer Polyethylene Terephthalate Waste, J Appl Polym Sci 115 (2010) 249-254.
[4] S. R. Shukla, A. M. Harad, L. S. Jawalw, Recycling of PET into useful textile auxiliaries, Waste Manage 28 (2008) 51-56.
[5] A. M. Atta, A. F. El-Kafrawy, M. H. Aly, A. A. Abdel-Azim. New epoxy resins based on recycled poly(ethylene terephthalate) as organic coatings, Prog Org Coat 58 (2007) 13-22.
[6] A. M. Atta, M. E. Abdel-Raouf, S. M. Elsaeed, A. A. Abdel-Azim. Curable resins based on recycled poly(ethylene terephthalate for coatings applications), Prog Org Coat 55 (2006) 50-59.
[7] S. Aslan, B. Immirzi, P. Laurienzo, M. Malinconico, E. Martuscelli, M.G. Volpe, M. Pelino, L. Savini, Unsaturated polyester resins from glycolysed waste polyethyleneterephthalate: synthesis and comparison of properties and performance with virgin resin, J Mater Sci 32 (1997) 2329-2336.
[8] V. Pimpan, R. Sirisook, S. Chuayjuljit, Synthesis of Unsaturated Polyester Resin from Postconsumer PET Bottles: Effect of Type of Glycol on Characteristics of Unsaturated Polyester Resin, J Appl Polym Sci 88 (2003) 788-792.
[9] D. J. Suh, O. O. Park, K. H. Yoon, The properties of unsaturated based on the glycolyzed poly(ethylene terephthalate) with various glycol compositions, Polymer 41 (2000) 461-466.
[10] G. Güçlü, M. Orbay, Alkyd resins synthesized from postconsumer PET bottles, Prog Org Coat 65 (2009) 362-365.
[11] C. Kawamura, K. Ito, R. Nishida, I. Yoshihara, N. Numa, Coating resins synthesized from recycled PET, Prog Org Coat 45 (2002) 185-191.
[12] M. R. Patel, J. V. Patel, V. K. Sinha, Glycolyzed PET waste and castor oil-based polyols for two-pack coatings systems, Polym Int 55 (2006) 1315-1322.
[13] S. M. Cakić, J. V. Stamenković, D. M. Djordjević, I. S. Ristić, Synthesis and degradation profile of cast films of PPG-DMPA-IPDI aqueous polyurethane dispersions based on selective catalysts, Polym Degrad Stab 94, 11, (2009) 2015-2022.
[14] S. M. Cakić, I. S. Ristić, D. M. Djordjević, J. V. Stamenković, D. T. Stojiljković, Effect of the chain extender and selective catalyst on thermooxidative stability of aqueous polyurethane dispersions, Prog Org Coat 67, 3, (2010) 274-280.
[15] I. Bechara, Formulating with polyurethane dispersions, Eur Coat J 4 (1998) 236-243.
[16] M. A. Perez-Liminana, F. Aran-Aıs, A. M. Torro-Palau, A. C. Orgiles-Barcelo, J. M. Martın-Martınez, Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups, Int J Adhes Adhes 25 (2005) 507-517.
[17] F. M. B. Coutinho, M. C. Delpech, T. L. Alves, A. A. Ferreira, Degradation profile of polyurethane and poly(urethane-urea) aqueous dispersions based on hydroxyterminated polybutadiene and different diisocyanates, Polym Degrad Stab 81 (2003) 19-27.
[18] K. Mequanint, R. Sanderson, H. Pasch, Thermogravimetric study of phosphated polyurethane ionomers, Polym Degrad Stab 77 (2002) 121-128.
[19] B. Pukánszky Jr., K. Bagdi, Z. Tóvölgyi, J. Varga, L. Botz, S. Hudak, T. Dóczi, B. Pukánszky, Nanophase separation in segmented polyurethane elastomers: Effect of specific interactions on structure and properties. Eur Polym J 44 (2008) 2431-2438.
[20] N. S. Schneider, R. W. Matton, Thermal transition behavior of polybutadiene containing polyurethanes, Polym Eng Sci 19 (1979) 1122-1128.